# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import requests import time import torch from PIL import Image from transformers import LlavaForConditionalGeneration, AutoProcessor from ipex_llm import optimize_model if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for LLaVA model') parser.add_argument('--repo-id-or-model-path', type=str, default="llava-hf/llava-1.5-7b-hf", help='The huggingface repo id for the LLaVA model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="Describe image in detail", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_url_or_path prompt = args.prompt model = LlavaForConditionalGeneration.from_pretrained(model_path) model = optimize_model(model, low_bit='sym_int4').eval() model = model.half().to("xpu") processor = AutoProcessor.from_pretrained(model_path) # here the prompt tuning refers to https://huggingface.co/llava-hf/llava-1.5-7b-hf#using-pure-transformers messages = [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": prompt} ] } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) if os.path.exists(image_path): image = Image.open(image_path) else: image = Image.open(requests.get(image_path, stream=True).raw) inputs = processor(text=text, images=image, return_tensors="pt").to('xpu') with torch.inference_mode(): # warmup output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict) # start inference st = time.time() output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict) et = time.time() output_str = processor.decode(output[0]) print(f'Inference time: {et-st} s') print('-'*20, 'Input Image', '-'*20) print(image_path) print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)