# Ziya In this directory, you will find examples on how you could run Ziya BF16 inference with self-speculative decoding using IPEX-LLM on [Intel CPUs](../README.md). For illustration purposes,we utilize the [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0) as reference Ziya model. ## 0. Requirements To run the example with IPEX-LLM on Intel CPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [speculative.py](speculative.py), we show a basic use case for a Ziya model to predict the next N tokens using `generate()` API, with IPEX-LLM speculative decoding optimizations on Intel CPUs. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu pip install intel_extension_for_pytorch==2.1.0 pip install transformers==4.35.2 ``` ### 2. Configures high-performing processor environment variables ```bash source ipex-llm-init -t export OMP_NUM_THREADS=48 # you can change 48 here to #cores of one processor socket ``` ### 3. Run We recommend to use `numactl` to bind the program to a specified processor socket: ```bash numactl -C 0-47 -m 0 python ./speculative.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` For example, 0-47 means bind the python program to core list 0-47 for a 48-core socket. Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Ziya model (e.g. `IDEA-CCNL/Ziya-Coding-34B-v1.0`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `IDEA-CCNL/Ziya-Coding-34B-v1.0`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). A default prompt is provided. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. #### Sample Output #### [IDEA-CCNL/Ziya-Coding-34B-v1.0](https://huggingface.co/IDEA-CCNL/Ziya-Coding-34B-v1.0) ```log : 写一段快速排序 : def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) Tokens generated 100 E2E Generation time xx.xxxxs First token latency xx.xxxxs ```