# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pytest import tempfile import torch from bigdl.llm.transformers import AutoModelForCausalLM from transformers import AutoTokenizer mistral_model_path = os.environ.get('MISTRAL_ORIGIN_PATH') prompt = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun" @pytest.mark.parametrize("Model, Tokenizer, model_path, prompt", [ (AutoModelForCausalLM, AutoTokenizer, mistral_model_path, prompt) ]) def test_optimize_model(Model, Tokenizer, model_path, prompt): tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True) input_ids = tokenizer.encode(prompt, return_tensors="pt") model = Model.from_pretrained(model_path, load_in_4bit=True, optimize_model=False, trust_remote_code=True) logits_base_model = (model(input_ids)).logits model = Model.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True) logits_optimized_model = (model(input_ids)).logits diff = abs(logits_base_model - logits_optimized_model).flatten() assert any(diff) is False @pytest.mark.parametrize('prompt, answer', [ ('What is the capital of France?\n\n', 'Paris') ]) @pytest.mark.parametrize('Model, Tokenizer, model_path',[ (AutoModelForCausalLM, AutoTokenizer, mistral_model_path), ]) def test_load_low_bit_completion(Model, Tokenizer, model_path, prompt, answer): tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True) model = Model.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True) with tempfile.TemporaryDirectory() as tempdir: model.save_low_bit(tempdir) loaded_model = Model.load_low_bit(tempdir, optimize_model=True, trust_remote_code=True) with torch.inference_mode(): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = loaded_model.generate(input_ids, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) assert answer in output_str if __name__ == '__main__': pytest.main([__file__])