# Langchain Native INT4 examples The examples in [native_int4](./native_int4) folder show how to use langchain with `bigdl-llm` native INT4 mode. ## Install bigdl-llm Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install). ## Install Required Dependencies for langchain examples. ```bash pip install langchain==0.0.184 pip install -U chromadb==0.3.25 pip install -U pandas==2.0.3 ``` ## Convert Models using bigdl-llm Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model). ## Run the examples ### 1. Streaming Chat ```bash python native_int4/streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model - `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom` - `-q QUESTION`: question to ask. Default is `What is AI?`. - `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`. ### 2. Question Answering over Docs ```bash python native_int4/docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step - `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom` - `-i DOC_PATH`: **required**, path to the input document - `-q QUESTION`: question to ask. Default is `What is AI?`. - `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`. - `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`. ### 3. Voice Assistant > This example is adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant with only tiny code change. Some extra dependencies are required to be installed for this example. ```bash pip install SpeechRecognition pip install pyttsx3 pip install PyAudio pip install whisper.ai pip install soundfile ``` ```bash python native_int4/voiceassistant.py -x MODEL_FAMILY -m CONVERTED_MODEL_PATH -t THREAD_NUM -c CONTEXT_SIZE ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model - `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom` - `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`. - `-c CONTEXT_SIZE`: specify maximum context size. Default to be 512. When you see output says > listening now... Please say something through your microphone (e.g. What is AI). The program will automatically detect when you have completed your speech and recognize them. #### Known Issues The speech_recognition library may occasionally skip recording due to low volume. An alternative option is to save the recording in WAV format using `PyAudio` and read the file as an input. Here is an example using PyAudio: ```python import pyaudio import speech_recognition as sr CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 # The desired number of input channels RATE = 16000 # The desired rate (in Hz) RECORD_SECONDS = 10 # Recording time (in second) WAVE_OUTPUT_FILENAME = "/path/to/pyaudio_out.wav" p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) print("*"*10, "Listening\n") frames = [] data =0 for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) ## ,exception_on_overflow = False frames.append(data) ## print("*"*10, "Stop recording\n") stream.stop_stream() stream.close() p.terminate() wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() r = sr.Recognizer() with sr.AudioFile(WAVE_OUTPUT_FILENAME) as source1: audio = r.record(source1) # read the entire audio file frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0 ``` ### 4. Math This is an example using `LLMMathChain`. This example has been validated using [phoenix-7b](https://huggingface.co/FreedomIntelligence/phoenix-inst-chat-7b). ```bash python transformers_int4/math.py -m MODEL_PATH -q QUESTION ``` arguments info: - `-m CONVERTED_MODEL_PATH`: **required**, path to the transformers model - `-q QUESTION`: question to ask. Default is `What is 13 raised to the .3432 power?`.