repo_id: - 'THUDM/chatglm-6b' - 'THUDM/chatglm2-6b' - 'meta-llama/Llama-2-7b-chat-hf' # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now local_model_hub: 'path to your local model hub' warm_up: 1 num_trials: 3 num_beams: 1 # default to greedy search low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4) batch_size: 1 # default to 1 in_out_pairs: - '32-32' - '1024-128' test_api: - "transformer_int4" - "native_int4" - "optimize_model" - "pytorch_autocast_bf16" # - "transformer_autocast_bf16" # - "bigdl_ipex_bf16" # - "bigdl_ipex_int4" # - "bigdl_ipex_int8" # - "ipex_fp16_gpu" # on Intel GPU # - "bigdl_fp16_gpu" # on Intel GPU # - "transformer_int4_gpu" # on Intel GPU # - "optimize_model_gpu" # on Intel GPU # - "deepspeed_transformer_int4_cpu" # on Intel SPR Server # - "transformer_int4_gpu_win" # on Intel GPU for Windows # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, use fp16 for non-linear layer # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows using load_low_bit API. Please make sure you have used the save.py to save the converted low bit model # - "deepspeed_optimize_model_gpu" # deepspeed autotp on Intel GPU # - "speculative_cpu" # - "speculative_gpu" cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api) streaming: False # whether output in streaming way (only avaiable now for gpu win related test_api)