# CodeGeeX2 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on CodeGeex2 models which is implemented based on the ChatGLM2 architecture trained on more code data. We utilize the [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) as a reference CodeGeeX2 model. ## 0. Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example 1: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a CodeGeeX2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: On Linux: ```bash conda create -n llm python=3.11 # recommend to use Python 3.11 conda activate llm # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu pip install transformers==4.31.0 ``` On Windows: ```cmd conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[all] pip install transformers==4.31.0 ``` ### 2. Run ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the CodeGeex2 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/codegeex2-6b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'# language: Python\n# write a bubble sort function\n'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `128`. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```cmd python ./generate.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init -t # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py ``` #### 2.3 Sample Output #### [THUDM/codegeex2-6b](https://huggingface.co/THUDM/codegeex2-6b) ```log Inference time: xxxx s -------------------- Prompt -------------------- # language: Python # write a bubble sort function -------------------- Output -------------------- # language: Python # write a bubble sort function def bubble_sort(lst): for i in range(len(lst) - 1): for j in range(len(lst) - 1 - i): if lst[j] > lst[j + 1]: lst[j], lst[j + 1] = lst[j + 1], lst[j] return lst print(bubble_sort([1, 2, 3, 4, 5, 6, 7, 8, ```