# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/main/src/transformers/models/gemma/modeling_gemma.py # coding=utf-8 # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional, Tuple import torch from torch import nn from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu from ipex_llm.transformers.models.utils import mlp_fusion_check, GELU from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36, rotate_half from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5 from ipex_llm.transformers.models.utils import use_decoding_fast_path import os KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def should_use_fuse_rope(self, hidden_states, position_ids): use_fuse_rope = hidden_states.device.type == "xpu" use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad) use_fuse_rope = use_fuse_rope and position_ids is not None return use_fuse_rope def gemma_rms_norm_forward(self, hidden_states): if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad): import linear_q4_0 x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous() output = linear_q4_0.rms_norm(self.weight + 1, x_2d, self.eps) return output.reshape(hidden_states.shape) input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.eps) return (1 + self.weight) * hidden_states.to(input_dtype) def gemma_mlp_forward( self, x: torch.Tensor, residual=None ) -> torch.Tensor: x_2d = x.view(-1, x.shape[-1]) bsz, hidden_size = x_2d.shape qtype = getattr(self.gate_proj, "qtype", None) if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla: import linear_q4_0 if not x_2d.is_contiguous(): x_2d = x_2d.contiguous() out = self.down_proj(linear_q4_0.mlp_forward_xpu( x_2d, self.gate_proj.weight.data, self.up_proj.weight.data, x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len, GELU, qtype )) else: out = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) if residual is not None: return out + residual else: return out def gemma_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, past_key_value: Optional[Tuple[torch.Tensor]]=None, output_attentions: bool=False, use_cache: bool=False, cache_position: Optional[torch.Tensor]=None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, hidden_size = hidden_states.size() device = hidden_states.device # for flash attention original_dtype = hidden_states.dtype use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) decoding_fast_path = use_decoding_fast_path(self.q_proj, use_fuse_rope, enough_kv_room, bsz * q_len) if decoding_fast_path: hidden_states = hidden_states.view(1, -1) cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] kv_seq_len = cache_k.shape[-2] import linear_q4_0 query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight, position_ids, cache_k, cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len, self.head_dim) kv_seq_len += 1 # update past_key_value's seem_tokens and kv caches. if self.layer_idx == 0: past_key_value.seen_tokens = kv_seq_len past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: invalidInputError(False, "The cache structure has changed since version v4.36. " f"If you are using {self.__class__.__name__} for " "auto-regressive decodingwith k/v caching, please make sure " "to initialize the attention class with a layer index.") kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) if use_fuse_rope: cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None) query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states, sin, cos, "gemma") else: cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None) if past_key_value is not None: # update the number of seen tokens if self.layer_idx == 0: past_key_value.seen_tokens += key_states.shape[-2] # reuse k, v, self_attention # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx` if len(past_key_value.key_cache) <= self.layer_idx: past_key_value.key_cache.append(key_states) past_key_value.value_cache.append(value_states) else: cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] if not enough_kv_room: # allocate new new_c_k, new_c_v = extend_kv_cache(bsz, self.num_key_value_heads, # Support GQA self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_c_k[:] = cache_k new_c_v[:] = cache_v cache_k = new_c_k cache_v = new_c_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) # update past_key_value past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it if cache_position is not None: causal_mask = attention_mask[:, :, cache_position, : key_states.shape[-2]] else: causal_mask = attention_mask attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): invalidInputError( False, f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, -1) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output.to(original_dtype), attn_weights, past_key_value