# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import types import warnings import torch import transformers from typing import List from unittest.mock import patch from transformers.dynamic_module_utils import get_imports import intel_npu_acceleration_library as npu_lib from ipex_llm.utils.common.log4Error import invalidInputError from ipex_llm.transformers.utils import logger from ipex_llm.transformers.npu_models.convert import optimize_llm def patch_flash_attn_import(filename: str) -> List[str]: """Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72.""" imports = get_imports(filename) if "flash_attn" in imports: imports.remove("flash_attn") return imports def ignore_argument(kwargs: dict, key: 'str'): arg = kwargs.pop(key, None) if arg is not None: warnings.warn(f"argument `{key}={arg}` will be ignored") class _BaseAutoModelClass: HF_MODEL = None @classmethod @patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import) def from_pretrained(cls, *args, **kwargs): """ Load a model from a directory or the HF Hub. Use load_in_low_bit parameter to convert model to low-bit format, like int4 and int8. The loaded model will run supported OPs on NPU, then run other OPs on CPU. Three new arguments are added to extend Hugging Face's from_pretrained method as follows: :param load_in_low_bit: str value, options are ``'sym_int4'``, ``'sym_int8'``, ``'fp16'``, ``'fp32'``. Relevant low bit optimizations will be applied to the model. :return: a model instance """ if kwargs.get('device_map', None) not in [None, 'cpu', 'auto']: warnings.warn("`device_map` will be ignored") kwargs['device_map'] = 'cpu' if kwargs.get('torch_dtype', None) not in [None, 'auto', torch.float]: warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used") kwargs['torch_dtype'] = torch.float low_bit = kwargs.pop('load_in_low_bit', 'fp32') try: # for intel_npu_acceleration_library >= 1.1.0 from intel_npu_acceleration_library.dtypes import int8, int4 qtype_map = { 'sym_int4': int4, 'sym_int8': "sym_int8_rtn", 'fp16': torch.half, 'fp32': torch.float, } except ImportError as _e: # for intel_npu_acceleration_library < 1.1.0 qtype_map = { 'sym_int8': torch.int8, 'fp16': torch.half, 'fp32': torch.float, } invalidInputError(low_bit in qtype_map.keys(), f"unsupported low_bit: {low_bit}, " f"only {list(qtype_map.keys())} are supported") qtype = qtype_map[low_bit] kwargs["low_cpu_mem_usage"] = True # ignore following arguments ignore_argument(kwargs, "model_hub") ignore_argument(kwargs, "lightweight_bmm") ignore_argument(kwargs, "load_in_4bit") ignore_argument(kwargs, "load_in_8bit") ignore_argument(kwargs, "imatrix") ignore_argument(kwargs, "mixed_precision") ignore_argument(kwargs, "cpu_embedding") ignore_argument(kwargs, "embedding_qtype") ignore_argument(kwargs, "optimize_model") ignore_argument(kwargs, "modules_to_not_convert") ignore_argument(kwargs, "quantization_config") ignore_argument(kwargs, "speculative") ignore_argument(kwargs, "pipeline_parallel_stages") model = cls.HF_Model.from_pretrained(*args, **kwargs) logger.info(f"Converting model, it may takes up to several minutes ...") try: # for intel_npu_acceleration_library >= 1.1.0 from intel_npu_acceleration_library.quantization import quantize_model from intel_npu_acceleration_library.compiler import create_npu_kernels with torch.no_grad(): optimize_llm(model) if qtype == "sym_int8_rtn": cls.load_convert(qtype, model, *args, **kwargs) else: if not qtype.is_floating_point: model = quantize_model(model, qtype) create_npu_kernels(model) model = model.eval() except ImportError as _e: # for intel_npu_acceleration_library < 1.1.0 model = npu_lib.compile(model, qtype, False) logger.info(f"Finish to convert model") # add save_low_bit to pretrained model dynamically model.save_low_bit = types.MethodType(cls.save_low_bit, model) return model @classmethod def load_convert(cls, q_k, optimize_model, *arg, **kwarg): from ipex_llm.transformers.npu_models.convert import replace_with_QuantizedLinear replace_with_QuantizedLinear(optimize_model, q_k) @staticmethod def save_low_bit(self, model_dir: str, *args, **kwargs): os.makedirs(model_dir, exist_ok=True) model_name = "pytorch_npu_model.pt" model_path = os.path.join(model_dir, model_name) del self.save_low_bit # workaround a bug torch.save(self, model_path) @staticmethod @patch("transformers.dynamic_module_utils.get_imports", patch_flash_attn_import) def load_low_bit(model_dir: str, *args, **kwargs): if kwargs.pop('torch_dtype', None) not in [None, 'auto', torch.float]: warnings.warn("`torch_dtype` will be ignored, `torch.float` will be used") # ignore following arguments ignore_argument(kwargs, "model_hub") ignore_argument(kwargs, "lightweight_bmm") ignore_argument(kwargs, "cpu_embedding") ignore_argument(kwargs, "embedding_qtype") ignore_argument(kwargs, "optimize_model") ignore_argument(kwargs, "modules_to_not_convert") ignore_argument(kwargs, "speculative") ignore_argument(kwargs, "pipeline_parallel_stages") model_name = "pytorch_npu_model.pt" model_path = os.path.join(model_dir, model_name) return torch.load(model_path) class AutoModelForCausalLM(_BaseAutoModelClass): HF_Model = transformers.AutoModelForCausalLM class AutoModel(_BaseAutoModelClass): HF_Model = transformers.AutoModel class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass): HF_Model = transformers.AutoModelForSpeechSeq2Seq class AutoModelForSeq2SeqLM(_BaseAutoModelClass): HF_Model = transformers.AutoModelForSeq2SeqLM class AutoModelForSequenceClassification(_BaseAutoModelClass): HF_Model = transformers.AutoModelForSequenceClassification class AutoModelForMaskedLM(_BaseAutoModelClass): HF_Model = transformers.AutoModelForMaskedLM class AutoModelForQuestionAnswering(_BaseAutoModelClass): HF_Model = transformers.AutoModelForQuestionAnswering class AutoModelForNextSentencePrediction(_BaseAutoModelClass): HF_Model = transformers.AutoModelForNextSentencePrediction class AutoModelForMultipleChoice(_BaseAutoModelClass): HF_Model = transformers.AutoModelForMultipleChoice class AutoModelForTokenClassification(_BaseAutoModelClass): HF_Model = transformers.AutoModelForTokenClassification