# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import time import argparse from ipex_llm.transformers.npu_model import AutoModelForCausalLM from transformers import AutoTokenizer, TextStreamer from transformers.utils import logging logger = logging.get_logger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Predict Tokens using `generate()` API for npu model" ) parser.add_argument( "--repo-id-or-model-path", type=str, default="THUDM/glm-edge-1.5b-chat", help="The huggingface repo id for the GLM-Edge model to be downloaded" ", or the path to the huggingface checkpoint folder.", ) parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict.") parser.add_argument("--max-context-len", type=int, default=1024) parser.add_argument("--max-prompt-len", type=int, default=512) parser.add_argument('--low-bit', type=str, default="sym_int4", help='Low bit optimizations that will be applied to the model.') parser.add_argument("--disable-streaming", action="store_true", default=False) parser.add_argument("--save-directory", type=str, required=True, help="The path of folder to save converted model, " "If path not exists, lowbit model will be saved there. " "Else, lowbit model will be loaded.", ) args = parser.parse_args() model_path = args.repo_id_or_model_path if not os.path.exists(args.save_directory): model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, trust_remote_code=True, attn_implementation="eager", load_in_low_bit=args.low_bit, optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, save_directory=args.save_directory ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer.save_pretrained(args.save_directory) else: model = AutoModelForCausalLM.load_low_bit( args.save_directory, attn_implementation="eager", torch_dtype=torch.float16, optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, ) tokenizer = AutoTokenizer.from_pretrained(args.save_directory, trust_remote_code=True) if args.disable_streaming: streamer = None else: streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True) print("-" * 80) print("done") with torch.inference_mode(): print("finish to load") for i in range(3): message = [{"role": "user", "content": args.prompt}] inputs = tokenizer.apply_chat_template( message, return_tensors="pt", add_generation_prompt=True, return_dict=True, ) _input_ids = inputs["input_ids"] print("-" * 20, "Input", "-" * 20) print("input length:", len(_input_ids[0])) input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False) print(input_str) print("-" * 20, "Output", "-" * 20) st = time.time() output = model.generate( _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict, streamer=streamer ) end = time.time() if args.disable_streaming: output_str = tokenizer.decode(output[0], skip_special_tokens=False) print(output_str) print(f"Inference time: {end-st} s") print("-" * 80) print("done") print("success shut down")