# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from bigdl.llm.transformers import AutoModelForCausalLM from transformers import LlamaTokenizer # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style LLAMA2_PROMPT_FORMAT = """### HUMAN: {prompt} ### RESPONSE: """ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--save-path', type=str, default=None, help='The path to save the low-bit model.') parser.add_argument('--load-path', type=str, default=None, help='The path to load the low-bit model.') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path load_path = args.load_path if load_path: model = AutoModelForCausalLM.load_low_bit(load_path, trust_remote_code=True) tokenizer = LlamaTokenizer.from_pretrained(load_path) else: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True) tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) save_path = args.save_path if save_path: model.save_low_bit(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer are saved to {save_path}") # please save/load model before you run it on GPU model = model.to('xpu') # Generate predicted tokens with torch.inference_mode(): prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict) st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(output_str)