# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import transformers import time import argparse import torch.distributed as dist from fastapi import FastAPI, HTTPException from pydantic import BaseModel import uvicorn def get_int_from_env(env_keys, default): """Returns the first positive env value found in the `env_keys` list or the default.""" for e in env_keys: val = int(os.environ.get(e, -1)) if val >= 0: return val return int(default) local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0") world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1") os.environ["RANK"] = str(local_rank) os.environ["WORLD_SIZE"] = str(world_size) os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500") global model, tokenizer def load_model(model_path, low_bit): from ipex_llm import optimize_model import torch import time import argparse from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it from transformers import LlamaTokenizer, AutoTokenizer import deepspeed from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator from deepspeed.accelerator import set_accelerator, get_accelerator from intel_extension_for_deepspeed import XPU_Accelerator # First use CPU as accelerator # Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage current_accel = CPU_Accelerator() set_accelerator(current_accel) global model, tokenizer model = AutoModelForCausalLM.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True, torch_dtype=torch.float16, trust_remote_code=True, use_cache=True) model = deepspeed.init_inference( model, mp_size=world_size, dtype=torch.bfloat16, replace_method="auto", ) # Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format # Convert the rest of the model into float16 to reduce allreduce traffic model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16) # Next, use XPU as accelerator to speed up inference current_accel = XPU_Accelerator() set_accelerator(current_accel) # Move model back to xpu model = model.to(f'xpu:{local_rank}') # Modify backend related settings if world_size > 1: get_accelerator().set_device(local_rank) dist_backend = get_accelerator().communication_backend_name() import deepspeed.comm.comm deepspeed.comm.comm.cdb = None from deepspeed.comm.comm import init_distributed init_distributed() # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) def generate_text(prompt: str, n_predict: int = 32): input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}') output = model.generate(input_ids, max_new_tokens=n_predict, use_cache=True) torch.xpu.synchronize() return output class PromptRequest(BaseModel): prompt: str n_predict: int = 32 app = FastAPI() @app.post("/generate/") async def generate(prompt_request: PromptRequest): if local_rank == 0: object_list = [prompt_request] dist.broadcast_object_list(object_list, src=0) start_time = time.time() output = generate_text(object_list[0].prompt, object_list[0].n_predict) generate_time = time.time() - start_time output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) return {"generated_text": output_str, "generate_time": f'{generate_time:.3f}s'} if __name__ == "__main__": parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--port', type=int, default=8000, help='The port number on which the server will run.') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit load_model(model_path, low_bit) if local_rank == 0: uvicorn.run(app, host="0.0.0.0", port=args.port) else: while True: object_list = [None] dist.broadcast_object_list(object_list, src=0) output = generate_text(object_list[0].prompt, object_list[0].n_predict)