# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import numpy as np from transformers import AutoTokenizer, GenerationConfig if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for DeepSeek-MoE model') parser.add_argument('--repo-id-or-model-path', type=str, default="/mnt/disk1/models/deepseek-moe-16b-chat", help='The huggingface repo id for the CodeShell model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path from transformers import AutoModelForCausalLM from ipex_llm import optimize_model model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype = torch.bfloat16, device_map = "auto", attn_implementation="eager") model.generation_config = GenerationConfig.from_pretrained(model_path) model.generation_config.pad_token_id = model.generation_config.eos_token_id model = optimize_model(model) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): messages = [ {"role": "user", "content": args.prompt} ] prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") st = time.time() outputs = model.generate(input_tensor.to(model.device), max_new_tokens=args.n_predict) end = time.time() result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(result)