# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig from ipex_llm import optimize_model torch.manual_seed(1234) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for Qwen-VL model') parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat", help='The huggingface repo id for the Qwen-VL model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') current_path = os.path.dirname(os.path.abspath(__file__)) args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu", trust_remote_code=True) # With only one line to enable BigDL-LLM optimization on model # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = optimize_model(model, low_bit='sym_int4', modules_to_not_convert=['c_fc', 'out_proj']) model = model.to('xpu') # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0) model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Session ID session_id = 1 while True: print('-'*20, 'Session %d' % session_id, '-'*20) image_input = input(f' Please input a picture: ') if image_input.lower() == 'exit' : # type 'exit' to quit the dialouge break text_input = input(f' Please enter the text: ') if text_input.lower() == 'exit' : # type 'exit' to quit the dialouge break if session_id == 1: history = None all_input = [{'image': image_input}, {'text': text_input}] input_list = [_input for _input in all_input if list(_input.values())[0] != ''] if len(input_list) == 0: print("Input list should not be empty. Please try again with valid input.") continue query = tokenizer.from_list_format(input_list) response, history = model.chat(tokenizer, query = query, history = history) torch.xpu.synchronize() print('-'*10, 'Response', '-'*10) print(response, '\n') image = tokenizer.draw_bbox_on_latest_picture(response, history) if image is not None: image.save(os.path.join(current_path, f'Session_{session_id}.png'), ) session_id += 1