# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # this code is copied from llama2 example test, and added performance test import torch import time import argparse from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM from transformers import AutoTokenizer import numpy as np from datetime import date import os current_dir = os.path.dirname(os.path.realpath(__file__)) benchmark_util_path = os.path.join(current_dir, '..') import sys sys.path.append(benchmark_util_path) from benchmark_util import BenchmarkWrapper results = [] def run_model(repo_id, local_model_hub=None, warm_up=1, num_trials=3): # TODO: make a parameter in_out_pairs = ['32-32', '1024-128'] result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials) for in_out_pair in in_out_pairs: results.append([repo_id, np.mean(result[in_out_pair], axis=0)[0], np.mean(result[in_out_pair], axis=0)[1], np.mean(result[in_out_pair], axis=0)[2], in_out_pair]) def run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, device='cpu'): if local_model_hub: repo_model_name = repo_id.split("/")[1] model_path = local_model_hub + "/" + repo_model_name else: model_path = repo_id # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']: model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) else: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_path) end = time.perf_counter() print(">> loading of model costs {}s".format(end - st)) model = BenchmarkWrapper(model) result = {} with torch.inference_mode(): for in_out in in_out_pairs: in_out_len = in_out.split("-") in_len = int(in_out_len[0]) out_len = int(in_out_len[1]) input_str = open(f"prompt/{in_len}.txt", 'r').read() # As different tokenizer has different encodings, # slice the input_ids to ensure the prompt length is required length. input_ids = tokenizer.encode(input_str, return_tensors="pt") input_ids = input_ids[:, :in_len] result[in_out] = [] for i in range(num_trials + warm_up): st = time.perf_counter() output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len) end = time.perf_counter() print("model generate cost: " + str(end - st)) output = tokenizer.batch_decode(output_ids) print(output[0]) if i >= warm_up: result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time]) return result if __name__ == '__main__': from omegaconf import OmegaConf conf = OmegaConf.load(f'{current_dir}/config.yaml') today = date.today() import pandas as pd for model in conf.repo_id: run_model(model, conf['local_model_hub'], conf['warm_up'], conf['num_trials']) df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens']) df.to_csv(f'{current_dir}/results-{today}.csv')