# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/falcon/modeling_falcon.py # which is licensed under Apache License 2.0: # # Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Falcon model.""" import math from typing import Optional, Tuple import torch from torch.nn import functional as F from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache import warnings import os KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids].unsqueeze(unsqueeze_dim) sin = sin[position_ids].unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def rw_attention_forward_7b( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, head_mask: Optional[torch.Tensor]=None, use_cache: bool=False, output_attentions: bool=False, ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape( batch_size * self.num_heads, q_length, self.head_dim ) key_layer = key_layer.transpose(1, 2).reshape( batch_size * self.num_kv, q_length, self.head_dim, ) value_layer = value_layer.transpose(1, 2).reshape( batch_size * self.num_kv, q_length, self.head_dim ) # query_layer, key_layer = self.maybe_rotary(query_layer, key_layer) _, seq_len, _ = query_layer.shape if layer_past is not None: _, seq_len_past, _ = layer_past[0].shape seq_len = seq_len + seq_len_past query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, seq_len) _, kv_length, _ = key_layer.shape if layer_past is not None: kv_length += layer_past[0].shape[-2] query_layer = query_layer.view(batch_size, self.num_heads, q_length, self.head_dim) key_layer = key_layer.view(batch_size, self.num_kv, q_length, self.head_dim) value_layer = value_layer.view(batch_size, self.num_kv, q_length, self.head_dim) device = hidden_states.device if layer_past is not None: # reuse k, v, self_attention cache_k = layer_past[0].view(batch_size, self.num_kv, -1, self.head_dim) cache_v = layer_past[1].view(batch_size, self.num_kv, -1, self.head_dim) if cache_k.stride()[1] < kv_length * cache_k.size(3): # allocate new new_cache_k, new_cache_v = extend_kv_cache( batch_size, self.num_kv, self.head_dim, cache_k.size(2), kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device ) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer) elif use_cache: max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache( batch_size, self.num_kv, self.head_dim, kv_length, max_cache_length, dtype=key_layer.dtype, device=device ) new_key_states[:] = key_layer new_value_states[:] = value_layer key_layer = new_key_states value_layer = new_value_states query_layer = query_layer.view(batch_size*self.num_heads, -1, self.head_dim) key_layer = key_layer.view(batch_size*self.num_kv, -1, self.head_dim) value_layer = value_layer.view(batch_size*self.num_kv, -1, self.head_dim) _, kv_length, _ = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None if alibi is None: query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) # attn_output = F.scaled_dot_product_attention( # query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True # ) if layer_past is not None: L = query_layer_.shape[-2] S = key_layer_.shape[-2] attn_mask = torch.ones(L, S, dtype=torch.bool, device=query_layer_.device) attn_output = F.scaled_dot_product_attention( query_layer_, key_layer_, value_layer_, attn_mask, 0.0, is_causal=False ) else: attn_output = F.scaled_dot_product_attention( query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True ) x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim) x = x.permute(0, 2, 1, 3) attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim) output_tensor = self.dense(attn_output) outputs = (output_tensor, present) if output_attentions: invalidInputError(False, f"'output_attentions' are not supported yet") return outputs else: attention_mask_float = (attention_mask * 1.0) \ .masked_fill(attention_mask, -1e9).to(torch.bfloat16) matmul_result = query_layer @ key_layer.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) # cast attention scores to fp32, # compute scaled softmax and cast back to initial dtype # - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) # attn_weights = torch. \ # masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax( (attention_scores + alibi) * self.inv_norm_factor + attention_mask_float, dim=-1, dtype=hidden_states.dtype, ) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view( batch_size * self.num_heads, q_length, kv_length ) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = attention_probs_reshaped @ value_layer # change view [batch_size, num_heads, q_length, head_dim] context_layer = self._merge_heads(context_layer) output_tensor = self.dense(context_layer) outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs def rw_attention_forward_40b( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, head_mask: Optional[torch.Tensor]=None, use_cache: bool=False, output_attentions: bool=False, ): # [batch_size, seq_length, 3 x hidden_size] fused_qkv = self.query_key_value(hidden_states) # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape( batch_size * self.num_heads, q_length, self.head_dim ) key_layer = key_layer.transpose(1, 2).reshape( batch_size * self.num_heads, q_length, self.head_dim, ) value_layer = value_layer.transpose(1, 2).reshape( batch_size * self.num_heads, q_length, self.head_dim ) # query_layer, key_layer = self.maybe_rotary(query_layer, key_layer) _, seq_len, _ = query_layer.shape if layer_past is not None: _, seq_len_past, _ = layer_past[0].shape seq_len = seq_len + seq_len_past query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, seq_len) _, kv_length, _ = key_layer.shape if layer_past is not None: kv_length += layer_past[0].shape[-2] query_layer = query_layer.view(batch_size, self.num_heads, q_length, self.head_dim) key_layer = key_layer.view(batch_size, self.num_heads, q_length, self.head_dim) value_layer = value_layer.view(batch_size, self.num_heads, q_length, self.head_dim) device = hidden_states.device if layer_past is not None: # reuse k, v, self_attention cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim) cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim) if cache_k.stride()[1] < kv_length * cache_k.size(3): # allocate new new_cache_k, new_cache_v = extend_kv_cache( batch_size, self.num_heads, self.head_dim, cache_k.size(2), kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device ) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer) elif use_cache: max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache( batch_size, self.num_heads, self.head_dim, kv_length, max_cache_length, dtype=key_layer.dtype, device=device ) new_key_states[:] = key_layer new_value_states[:] = value_layer key_layer = new_key_states value_layer = new_value_states query_layer = query_layer.view(batch_size*self.num_heads, -1, self.head_dim) key_layer = key_layer.view(batch_size*self.num_heads, -1, self.head_dim) value_layer = value_layer.view(batch_size*self.num_heads, -1, self.head_dim) _, kv_length, _ = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None if alibi is None: query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) key_layer_ = key_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) value_layer_ = value_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) # attn_output = F.scaled_dot_product_attention( # query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True # ) if present is not None: L = query_layer_.shape[-2] S = key_layer_.shape[-2] attn_mask = torch.ones(L, S, dtype=torch.bool, device=query_layer_.device) attn_output = F.scaled_dot_product_attention( query_layer_, key_layer_, value_layer_, attn_mask, 0.0, is_causal=False ) else: attn_output = F.scaled_dot_product_attention( query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True ) x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim) x = x.permute(0, 2, 1, 3) attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim) output_tensor = self.dense(attn_output) outputs = (output_tensor, present) if output_attentions: invalidInputError(False, f"'output_attentions' are not supported yet") return outputs else: attention_mask_float = (attention_mask * 1.0) \ .masked_fill(attention_mask, -1e9).to(torch.bfloat16) matmul_result = query_layer @ key_layer.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) # cast attention scores to fp32, # compute scaled softmax and cast back to initial dtype # - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) # attn_weights = torch \ # .masked_fill( # attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax( (attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)) * self.inv_norm_factor + attention_mask_float, dim=-1, dtype=hidden_states.dtype, ) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view( batch_size * self.num_heads, q_length, kv_length ) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = attention_probs_reshaped @ value_layer # change view [batch_size, num_heads, q_length, head_dim] context_layer = self._merge_heads(context_layer) output_tensor = self.dense(context_layer) outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs def falcon_attention_forward( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, head_mask: Optional[torch.Tensor]=None, use_cache: bool=False, output_attentions: bool=False, ): # [batch_size, seq_length, 3 x hidden_size] fused_qkv = self.query_key_value(hidden_states) num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape( batch_size * self.num_heads, query_length, self.head_dim ) key_layer = key_layer.transpose(1, 2).reshape( batch_size * num_kv_heads, query_length, self.head_dim, ) value_layer = value_layer.transpose(1, 2).reshape( batch_size * num_kv_heads, query_length, self.head_dim ) past_kv_length = 0 if layer_past is None else layer_past[0].shape[1] query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length) _, kv_length, _ = key_layer.shape if layer_past is not None: kv_length += layer_past[0].shape[-2] query_layer = query_layer.view(batch_size, self.num_heads, query_length, self.head_dim) key_layer = key_layer.view(batch_size, num_kv_heads, query_length, self.head_dim) value_layer = value_layer.view(batch_size, num_kv_heads, query_length, self.head_dim) device = hidden_states.device if layer_past is not None: # reuse k, v, self_attention cache_k = layer_past[0].view(batch_size, num_kv_heads, -1, self.head_dim) cache_v = layer_past[1].view(batch_size, num_kv_heads, -1, self.head_dim) if cache_k.stride()[1] < kv_length * cache_k.size(3): # allocate new new_cache_k, new_cache_v = extend_kv_cache( batch_size, num_kv_heads, self.head_dim, cache_k.size(2), kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device ) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer) elif use_cache: max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache( batch_size, num_kv_heads, self.head_dim, kv_length, max_cache_length, dtype=key_layer.dtype, device=device ) new_key_states[:] = key_layer new_value_states[:] = value_layer key_layer = new_key_states value_layer = new_value_states query_layer = query_layer.view(batch_size * self.num_heads, -1, self.head_dim) key_layer = key_layer.view(batch_size * num_kv_heads, -1, self.head_dim) value_layer = value_layer.view(batch_size * num_kv_heads, -1, self.head_dim) _, kv_length, _ = key_layer.shape if use_cache: present = (key_layer, value_layer) else: present = None attention_mask_float = (attention_mask * 1.0) \ .masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype) query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim) value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim) if alibi is None: if output_attentions: # F.scaled_dot_product_attention doesn't return the attention weights, so we have # to do it by hand if we want them attention_scores = query_layer_ @ key_layer_.transpose(-1, -2) attention_scores /= math.sqrt(self.head_dim) attention_scores = F.softmax( attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype ) attn_output = attention_scores @ value_layer_ else: attn_output = F.scaled_dot_product_attention( query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False ) attention_scores = None attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) attn_output = attn_output.permute(0, 2, 1, 3) attn_output = attn_output.reshape( batch_size, query_length, self.num_heads * self.head_dim ) output_tensor = self.dense(attn_output) if output_attentions: return output_tensor, present, attention_scores else: return output_tensor, present else: matmul_result = query_layer_ @ key_layer_.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view( batch_size, self.num_heads, query_length, kv_length ) # cast attention scores to fp32, # compute scaled softmax and cast back to initial dtype # - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by # adding (alibi * self.inv_norm_factor) to attention_mask_float. # I think this would be mathematically # equivalent and more performant, but there might be a numerical difference. # If you're reading this # and you'd like to experiment and maybe file a PR, feel free! attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) attention_logits *= self.inv_norm_factor attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size, num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view( batch_size, self.num_heads, query_length, kv_length ) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1) # change view [batch_size, q_length, num_heads * head_dim] context_layer = self._merge_heads(context_layer) output_tensor = self.dense(context_layer) if output_attentions: return output_tensor, present, attention_probs else: return output_tensor, present def falcon_attention_forward_4_36( self, hidden_states: torch.Tensor, alibi: Optional[torch.Tensor], attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor]=None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, head_mask: Optional[torch.Tensor]=None, use_cache: bool=False, output_attentions: bool=False, **kwargs, ): """ based on transformers==4.36.0 https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/falcon/modeling_falcon.py """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. \ Please make sure use `attention_mask` instead.`" ) fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, query_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape( batch_size, self.num_heads, query_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape( batch_size, num_kv_heads, query_length, self.head_dim) value_layer = value_layer.transpose(1, 2).reshape( batch_size, num_kv_heads, query_length, self.head_dim) kv_seq_len = key_layer.shape[-2] device = hidden_states.device if layer_past is not None: kv_seq_len += layer_past[0].shape[-2] if alibi is None: cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len) query_layer, key_layer = apply_rotary_pos_emb( query_layer, key_layer, cos, sin, position_ids) if layer_past is not None: # reuse k, v, self_attention cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim) cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim) if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3): # allocate new new_cache_k, new_cache_v = extend_kv_cache( batch_size, self.num_heads, self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device ) new_cache_k[:] = cache_k new_cache_v[:] = cache_v cache_k = new_cache_k cache_v = new_cache_v key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer) elif use_cache: max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH new_key_states, new_value_states = init_kv_cache( batch_size, self.num_heads, self.head_dim, kv_seq_len, max_cache_length, dtype=key_layer.dtype, device=device ) new_key_states[:] = key_layer new_value_states[:] = value_layer key_layer = new_key_states value_layer = new_value_states query_layer = query_layer.view(batch_size, self.num_heads, -1, self.head_dim) key_layer = key_layer.view(batch_size, self.num_heads, -1, self.head_dim) value_layer = value_layer.view(batch_size, self.num_heads, -1, self.head_dim) kv_length = key_layer.shape[-2] if use_cache: present = (key_layer, value_layer) else: present = None # SDPA with memory-efficient backend is currently (torch==2.1.2) # bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_layer.device.type == "cuda" and attention_mask is not None: query_layer = query_layer.contiguous() key_layer = key_layer.contiguous() value_layer = value_layer.contiguous() if alibi is None: if self._use_sdpa and not output_attentions: attn_output = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attention_mask, 0.0, # The query_length > 1 is necessary to match with # AttentionMaskConverter.to_causal_4d that does not create a causal mask in case # query_length == 1. is_causal=self.is_causal and attention_mask is None and query_length > 1, ) attention_scores = None else: attention_scores = query_layer @ key_layer.transpose(-1, -2) attention_scores /= math.sqrt(self.head_dim) attention_scores = F.softmax( attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype) # It is unclear why neither dropout nor head_mask is applied here # (while it is with alibi). attn_output = attention_scores @ value_layer attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim) attn_output = attn_output.permute(0, 2, 1, 3) attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_output) if output_attentions: return attn_output, present, attention_scores else: return attn_output, present else: if self._use_sdpa and not output_attentions and head_mask is None: attn_output = F.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=attention_mask, dropout_p=self.attention_dropout.p if self.training else 0.0, is_causal=self.is_causal and attention_mask is None and query_length > 1, ) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape( batch_size, query_length, self.num_heads * self.head_dim) attn_output = self.dense(attn_output) else: matmul_result = query_layer @ key_layer.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view( batch_size, self.num_heads, query_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - # [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a # minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1) attention_logits *= self.inv_norm_factor attention_probs = F.softmax( attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size, num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view( batch_size, self.num_heads, query_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1) # change view [batch_size, q_length, num_heads * head_dim] attn_output = self._merge_heads(attn_output) attn_output = self.dense(attn_output) if output_attentions: return attn_output, present, attention_probs else: return attn_output, present