# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is copied from # https://github.com/OpenAccess-AI-Collective/axolotl/blob/v0.4.0/scripts/finetune.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ipex_llm import llm_patch llm_patch(train=True) # The following is the original axolotl finetune code (without IPEX-LLM) """Prepare and train a model on a dataset. Can also infer from a model or merge lora""" import logging from pathlib import Path import fire import transformers from axolotl.cli import ( check_accelerate_default_config, check_user_token, do_inference, do_merge_lora, load_cfg, load_datasets, print_axolotl_text_art, ) from axolotl.cli.shard import shard from axolotl.common.cli import TrainerCliArgs from axolotl.train import train LOG = logging.getLogger("axolotl.scripts.finetune") def do_cli(config: Path = Path("examples/"), **kwargs): print_axolotl_text_art() LOG.warning( str( PendingDeprecationWarning( "scripts/finetune.py will be replaced with calling axolotl.cli.train" ) ) ) parsed_cfg = load_cfg(config, **kwargs) check_accelerate_default_config() check_user_token() parser = transformers.HfArgumentParser((TrainerCliArgs)) parsed_cli_args, _ = parser.parse_args_into_dataclasses( return_remaining_strings=True ) if parsed_cli_args.inference: do_inference(cfg=parsed_cfg, cli_args=parsed_cli_args) elif parsed_cli_args.merge_lora: do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args) elif parsed_cli_args.shard: shard(cfg=parsed_cfg, cli_args=parsed_cli_args) else: dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args) train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta) if __name__ == "__main__": fire.Fire(do_cli)