# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from typing import List import fire import torch import transformers from datasets import load_dataset import accelerate from ipex_llm.transformers.lisa import DynamicLayerActivationCallback from transformers import AutoTokenizer current_dir = os.path.dirname(os.path.realpath(__file__)) common_util_path = os.path.join(current_dir, '..') import sys sys.path.append(common_util_path) from common.utils import Prompter, get_train_val_data from ipex_llm.transformers import AutoModelForCausalLM from ipex_llm.utils.common import invalidInputError def train( # model/data params base_model: str = "meta-llama/Llama-2-7b-hf", # the only required argument, default to be "meta-llama/Llama-2-7b-hf" data_path: str = "yahma/alpaca-cleaned", output_dir: str = "./ipex-llm-lisa-alpaca", # training hyperparams bf16: bool = True, # default to bf16 batch_size: int = 128, micro_batch_size: int = 8, # default to be 8, limited by GPU memory num_epochs: int = 1, learning_rate: float = 2e-5, cutoff_len: int = 256, val_set_size: int = 2000, # llm hyperparams train_on_inputs: bool = True, # if False, masks out inputs in loss add_eos_token: bool = False, group_by_length: bool = False, # faster, but produces an odd training loss curve resume_from_checkpoint: str = None, # either training checkpoint or final adapter prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca. gradient_checkpointing: bool = False, deepspeed: str = None, training_mode: str = "lisa", lisa_activated_layers: int = 1, lisa_interval_steps: int = 20, ): invalidInputError(training_mode == "lisa", f"This example is for lisa training mode, but got training_mode={training_mode}.") print( f"Training Alpaca-LoRA model with params:\n" f"base_model: {base_model}\n" f"data_path: {data_path}\n" f"output_dir: {output_dir}\n" f"batch_size: {batch_size}\n" f"micro_batch_size: {micro_batch_size}\n" f"num_epochs: {num_epochs}\n" f"learning_rate: {learning_rate}\n" f"cutoff_len: {cutoff_len}\n" f"val_set_size: {val_set_size}\n" f"train_on_inputs: {train_on_inputs}\n" f"add_eos_token: {add_eos_token}\n" f"group_by_length: {group_by_length}\n" f"resume_from_checkpoint: {resume_from_checkpoint or False}\n" f"prompt template: {prompt_template_name}\n" f"training_mode: {training_mode}\n" f"lisa_activated_layers: {lisa_activated_layers}\n" f"lisa_interval_steps: {lisa_interval_steps}\n" ) assert ( base_model ), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'" gradient_accumulation_steps = batch_size // micro_batch_size prompter = Prompter(prompt_template_name) model = AutoModelForCausalLM.from_pretrained( base_model, load_in_low_bit="bf16", optimize_model=True, torch_dtype=torch.bfloat16, trust_remote_code=True, enable_xetla=False ) model = model.to("xpu") tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True) tokenizer.pad_token_id = ( 0 # unk. we want this to be different from the eos token ) tokenizer.padding_side = "left" # Allow batched inference print(model) if data_path.endswith(".json") or data_path.endswith(".jsonl"): data = load_dataset("json", data_files=data_path) else: data = load_dataset(data_path) train_data, val_data = get_train_val_data(data, tokenizer, prompter, train_on_inputs, add_eos_token, cutoff_len, val_set_size, seed=42) trainer_callbacks = [] # Instantiate the callback dynamic_layer_activation_callback = DynamicLayerActivationCallback( n_layers=lisa_activated_layers, # Number of layers to activate interval_steps = lisa_interval_steps, # Step interval to update active layers model = model ) trainer_callbacks.append(dynamic_layer_activation_callback) trainer = transformers.Trainer( model=model, train_dataset=train_data, eval_dataset=val_data, args=transformers.TrainingArguments( per_device_train_batch_size=micro_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, max_grad_norm=0.3, num_train_epochs=num_epochs, learning_rate=learning_rate, lr_scheduler_type="cosine", bf16=bf16, # ensure training more stable logging_steps=10, optim="adamw_hf", evaluation_strategy="steps" if val_set_size > 0 else "no", save_strategy="steps", eval_steps=200 if val_set_size > 0 else None, save_steps=200, output_dir=output_dir, load_best_model_at_end=True if val_set_size > 0 else False, group_by_length=group_by_length, gradient_checkpointing=gradient_checkpointing, deepspeed=deepspeed, save_safetensors=False, ), data_collator=transformers.DataCollatorForSeq2Seq( tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True ), callbacks=trainer_callbacks ) model.config.use_cache = False trainer.train(resume_from_checkpoint=resume_from_checkpoint) # model.save_pretrained(output_dir) trainer.save_model() if __name__ == "__main__": fire.Fire(train)