# Alpaca QLoRA Finetuning (experimental support) This example ports [Alpaca-LoRA](https://github.com/tloen/alpaca-lora/tree/main) to BigDL-LLM QLoRA on [Intel GPUs](../../README.md). ### 0. Requirements To run this example with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../README.md#requirements) for more information. ### 1. Install ```bash conda create -n llm python=3.9 conda activate llm # below command will install intel_extension_for_pytorch==2.0.110+xpu as default # you can install specific ipex/torch version for your need pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu pip install datasets transformers==4.34.0 pip install fire peft==0.5.0 pip install oneccl_bind_pt==2.0.100 -f https://developer.intel.com/ipex-whl-stable-xpu # necessary to run distributed finetuning pip install accelerate==0.23.0 ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Finetune Here, we provide example usages on different hardware. Please refer to the appropriate script based on your device: #### Finetuning LLaMA2-7B on single Arc A770 ```bash bash finetune_llama2_7b_arc_1_card.sh ``` #### Finetuning LLaMA2-7B on two Arc A770 ```bash bash finetune_llama2_7b_arc_2_card.sh ``` #### Finetuning LLaMA2-7B on single Data Center GPU Flex 170 ```bash bash finetune_llama2_7b_flex_170_1_card.sh ``` #### Finetuning LLaMA2-7B on three Data Center GPU Flex 170 ```bash bash finetune_llama2_7b_flex_170_3_card.sh ``` #### Finetuning LLaMA2-7B on single Intel Data Center GPU Max 1100 ```bash bash finetune_llama2_7b_pvc_1100_1_card.sh ``` #### Finetuning LLaMA2-7B on four Intel Data Center GPU Max 1100 ```bash bash finetune_llama2_7b_pvc_1100_4_card.sh ``` #### Finetuning LLaMA2-7B on single Intel Data Center GPU Max 1550 ```bash bash finetune_llama2_7b_pvc_1550_1_card.sh ``` #### Finetuning LLaMA2-7B on four Intel Data Center GPU Max 1550 ```bash bash finetune_llama2_7b_pvc_1550_4_card.sh ``` **Important: If you fail to complete the whole finetuning process, it is suggested to resume training from a previously saved checkpoint by specifying `resume_from_checkpoint` to the local checkpoint folder as following:** ```bash python ./alpaca_qlora_finetuning.py \ --base_model "meta-llama/Llama-2-7b-hf" \ --data_path "yahma/alpaca-cleaned" \ --output_dir "./bigdl-qlora-alpaca" \ --resume_from_checkpoint "./bigdl-qlora-alpaca/checkpoint-1100" ``` ### 4. Sample Output ```log {'loss': 1.9231, 'learning_rate': 2.9999945367033285e-05, 'epoch': 0.0} {'loss': 1.8622, 'learning_rate': 2.9999781468531096e-05, 'epoch': 0.01} {'loss': 1.9043, 'learning_rate': 2.9999508305687345e-05, 'epoch': 0.01} {'loss': 1.8967, 'learning_rate': 2.999912588049185e-05, 'epoch': 0.01} {'loss': 1.9658, 'learning_rate': 2.9998634195730358e-05, 'epoch': 0.01} {'loss': 1.8386, 'learning_rate': 2.9998033254984483e-05, 'epoch': 0.02} {'loss': 1.809, 'learning_rate': 2.999732306263172e-05, 'epoch': 0.02} {'loss': 1.8552, 'learning_rate': 2.9996503623845395e-05, 'epoch': 0.02} 1%|█ | 8/1164 [xx:xx