# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/TimDettmers/bitsandbytes/blob/0.39.1/bitsandbytes/nn/modules.py # which is licensed under the MIT license: # # MIT License # # Copyright (c) Facebook, Inc. and its affiliates. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import torch from transformers import AutoModelForCausalLM, LlamaTokenizer, AutoTokenizer import deepspeed from bigdl.llm import optimize_model import torch import intel_extension_for_pytorch as ipex import time import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--local_rank', type=int, default=0, help='this is automatically set when using deepspeed launcher') args = parser.parse_args() model_path = args.repo_id_or_model_path world_size = int(os.getenv("WORLD_SIZE", "1")) local_rank = int(os.getenv("RANK", "-1")) # RANK is automatically set by CCL distributed backend if local_rank == -1: # args.local_rank is automatically set by deepspeed subprocess command local_rank = args.local_rank # Native Huggingface transformers loading model = AutoModelForCausalLM.from_pretrained( model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True, torch_dtype=torch.float16, trust_remote_code=True, use_cache=True ) # Parallelize model on deepspeed model = deepspeed.init_inference( model, mp_size = world_size, dtype=torch.float16, replace_method="auto" ) # Apply BigDL-LLM INT4 optimizations on transformers model = optimize_model(model.module.to(f'cpu'), low_bit='sym_int4') model = model.to(f'cpu:{local_rank}') print(model) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): # Batch tokenizing prompt = args.prompt input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'cpu:{local_rank}') # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict, use_cache=True) # start inference start = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with BigDL-LLM INT4 optimizations output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict) end = time.time() if local_rank == 0: output_str = tokenizer.decode(output[0], skip_special_tokens=True) print('-'*20, 'Output', '-'*20) print(output_str) print(f'Inference time: {end - start} s')