## Build/Use BigDL-LLM cpu image ### Build Image ```bash docker build \ --build-arg http_proxy=.. \ --build-arg https_proxy=.. \ --build-arg no_proxy=.. \ --rm --no-cache -t intelanalytics/bigdl-llm-cpu:2.5.0-SNAPSHOT . ``` ### Use the image for doing cpu inference An example could be: ```bash #/bin/bash export DOCKER_IMAGE=intelanalytics/bigdl-llm-cpu:2.5.0-SNAPSHOT sudo docker run -itd \ --net=host \ --cpuset-cpus="0-47" \ --cpuset-mems="0" \ --memory="32G" \ --name=CONTAINER_NAME \ --shm-size="16g" \ $DOCKER_IMAGE ``` After the container is booted, you could get into the container through `docker exec`. To run inference using `BigDL-LLM` using cpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm#cpu-int4). ### Use chat.py chat.py can be used to initiate a conversation with a specified model. The file is under directory '/llm'. You can download models and bind the model directory from host machine to container when start a container. Here is an example: ```bash export DOCKER_IMAGE=intelanalytics/bigdl-llm-cpu:2.5.0-SNAPSHOT export MODEL_PATH=/home/llm/models sudo docker run -itd \ --net=host \ --cpuset-cpus="0-47" \ --cpuset-mems="0" \ --memory="32G" \ --name=CONTAINER_NAME \ --shm-size="16g" \ -v $MODEL_PATH:/llm/models/ $DOCKER_IMAGE ``` After entering the container through `docker exec`, you can run chat.py by: ```bash cd /llm python chat.py --model-path YOUR_MODEL_PATH ``` In the example above, it can be: ```bash cd /llm python chat.py --model-path /llm/models/MODEL_NAME ```