# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import argparse import requests import torch from PIL import Image from ipex_llm.transformers import AutoModel from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-Llama3-V-2_5 model') parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-Llama3-V-2_5", help='The huggingface repo id for the openbmb/MiniCPM-Llama3-V-2_5 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="What is in the image?", help='Prompt to infer') parser.add_argument('--stream', action='store_true', help='Whether to chat in streaming mode') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_url_or_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModel.from_pretrained(model_path, load_in_low_bit="sym_int4", optimize_model=True, trust_remote_code=True, use_cache=True, modules_to_not_convert=["vpm", "resampler"]) model = model.half().to('xpu') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model.eval() query = args.prompt if os.path.exists(image_path): image = Image.open(image_path).convert('RGB') else: image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') # Generate predicted tokens # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md msgs = [{'role': 'user', 'content': [image, args.prompt]}] # ipex_llm model needs a warmup, then inference time can be accurate model.chat( image=None, msgs=msgs, tokenizer=tokenizer, ) if args.stream: res = model.chat( image=None, msgs=msgs, tokenizer=tokenizer, stream=True ) print('-'*20, 'Input Image', '-'*20) print(image_path) print('-'*20, 'Input Prompt', '-'*20) print(args.prompt) print('-'*20, 'Stream Chat Output', '-'*20) for new_text in res: print(new_text, flush=True, end='') else: st = time.time() res = model.chat( image=None, msgs=msgs, tokenizer=tokenizer, ) torch.xpu.synchronize() end = time.time() print(f'Inference time: {end-st} s') print('-'*20, 'Input Image', '-'*20) print(image_path) print('-'*20, 'Input Prompt', '-'*20) print(args.prompt) print('-'*20, 'Chat Output', '-'*20) print(res)