# MiniCPM-V-2_6 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) (or [OpenBMB/MiniCPM-V-2_6](https://www.modelscope.cn/models/OpenBMB/MiniCPM-V-2_6) for ModelScope) as reference MiniCPM-V-2_6 model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `chat()` API In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2_6 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.40.0 "trl<0.12.0" # [optional] only needed if you would like to use ModelScope as model hub pip install modelscope==1.11.0 ``` #### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.40.0 "trl<0.12.0" # [optional] only needed if you would like to use ModelScope as model hub pip install modelscope==1.11.0 ``` ### 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 ```
#### 3.2 Configurations for Windows
For Intel iGPU and Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples - chat without streaming mode: ```bash # for Hugging Face model hub python ./chat.py --prompt 'What is in the image?' # for ModelScope model hub python ./chat.py --prompt 'What is in the image?' --modelscope ``` - chat in streaming mode: ```bash # for Hugging Face model hub python ./chat.py --prompt 'What is in the image?' --stream # for ModelScope model hub python ./chat.py --prompt 'What is in the image?' --stream --modelscope ``` - save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist) ```bash # for Hugging Face model hub python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' # for ModelScope model hub python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope ``` - chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists): ```bash # for Hugging Face model hub python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' # for ModelScope model hub python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope ``` > [!TIP] > For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`. Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'` for **Hugging Face** or `'OpenBMB/MiniCPM-V-2_6'` for **ModelScope**. - `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--stream`: flag to chat in streaming mode - `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output #### [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) ```log Inference time: xxxx s -------------------- Input Image -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Input Prompt -------------------- What is in the image? -------------------- Chat Output -------------------- The image features a young child holding a white teddy bear wearing a pink dress. The background shows some red flowers and stone walls, suggesting an outdoor setting. ``` ```log -------------------- Input Image -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Input Prompt -------------------- 图片里有什么? -------------------- Stream Chat Output -------------------- 图片中有一个穿着粉红色连衣裙的小孩,手里拿着一只穿着粉色芭蕾裙的白色泰迪熊。背景中有红色花朵和石头墙,表明照片可能是在户外拍摄的。 ``` The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):