# This file is copied from https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/llama-3/qlora.yml base_model: meta-llama/Meta-Llama-3-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_4bit: true strict: false datasets: - path: aaditya/alpaca_subset_1 type: alpaca dataset_prepared_path: val_set_size: 0 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 256 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 # paged_adamw_32bit is not supported # due to bitsandbytes issue https://github.com/TimDettmers/bitsandbytes/issues/1180 # optimizer: paged_adamw_32bit optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: # flash_attention is not supported flash_attention: false warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: "<|end_of_text|>"