# MiniCPM-V-2 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2 models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2) as a reference MiniCPM-V-2 model. ## 0. Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `chat()` API In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: On Linux: ```bash conda create -n llm python=3.11 conda activate llm # install ipex-llm with 'all' option pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu pip install peft timm ``` On Windows: ```cmd conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[all] pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu pip install peft timm ``` ### 2. Run - chat without streaming mode: ``` python ./chat.py --prompt 'What is in the image?' ``` - chat in streaming mode: ``` python ./chat.py --prompt 'What is in the image?' --stream ``` > [!TIP] > For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`. Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 model (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--stream`: flag to chat in streaming mode > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the MiniCPM model based on the capabilities of your machine. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```cmd python ./chat.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./chat.py ``` #### 2.3 Sample Output #### [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2) ```log Inference time: xxxx s -------------------- Input Image -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Input Prompt -------------------- What is in the image? -------------------- Chat Output -------------------- The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall. ``` ```log -------------------- Input Image -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Input Prompt -------------------- 图片里有什么? -------------------- Stream Chat Output -------------------- 图片中有一个小女孩,她手里拿着一个穿着粉色裙子的白色小熊玩偶。背景中有红色花朵和石头结构,可能是一个花园或庭院。 ``` The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):