# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is adapted from https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py # # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import transformers from transformers import LlamaTokenizer # noqa: F402 from bigdl.llm.transformers.qlora import PeftModel from bigdl.llm.transformers import AutoModelForCausalLM import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--adapter_path', type=str,) parser.add_argument('--output_path', type=str,) args = parser.parse_args() base_model = model_path = args.repo_id_or_model_path adapter_path = args.adapter_path tokenizer = LlamaTokenizer.from_pretrained(base_model) base_model = AutoModelForCausalLM.from_pretrained( base_model, # load_in_low_bit="nf4", # should load the orignal model torch_dtype=torch.float16, device_map={"": "cpu"}, ) first_weight = base_model.model.layers[0].self_attn.q_proj.weight first_weight_old = first_weight.clone() lora_model = PeftModel.from_pretrained( base_model, adapter_path, device_map={"": "cpu"}, torch_dtype=torch.float16, ) lora_weight = lora_model.base_model.model.model.layers[ 0 ].self_attn.q_proj.weight assert torch.allclose(first_weight_old, first_weight) # merge weights - new merging method from peft lora_model = lora_model.merge_and_unload() lora_model.train(False) # did we do anything? assert not torch.allclose(first_weight_old, first_weight) lora_model_sd = lora_model.state_dict() deloreanized_sd = { k.replace("base_model.model.", ""): v for k, v in lora_model_sd.items() if "lora" not in k } base_model.save_pretrained(args.output_path, state_dict=deloreanized_sd) tokenizer.save_pretrained(args.output_path)