import argparse import torch from datasets import load_dataset from tqdm import tqdm def parse_kwargs(kwstr): kvpair = [item.split('=') for item in kwstr.split(',') if item != ""] return {k:v for k, v in kvpair} parser = argparse.ArgumentParser() parser.add_argument("--model_path", required=True, type=str) parser.add_argument("--dataset", type=str, default='path=wikitext,name=wikitext-2-raw-v1') parser.add_argument("--device", type=str, default="xpu") parser.add_argument("--precision", type=str, default="sym_int4") parser.add_argument("--use-cache", action="store_true") parser.add_argument("--limit", type=int, default=None, help="Limit the number of examples per task. For debug only") args = parser.parse_args() if args.precision == "fp16": # ipex fp16 from transformers import AutoModelForCausalLM if "xpu" in args.device: import intel_extension_for_pytorch as ipex model = AutoModelForCausalLM.from_pretrained(args.model_path, use_cache=args.use_cache, trust_remote_code=True) model = model.half() else: # ipex-llm from ipex_llm.transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(args.model_path, load_in_low_bit=args.precision, use_cache=args.use_cache, trust_remote_code=True) model = model.half() model = model.to(args.device) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True) test = load_dataset(**parse_kwargs(args.dataset), split="test")["text"] if args.limit: test = test[:args.limit] encodings = tokenizer("\n\n".join(test), return_tensors="pt") max_length = model.config.max_position_embeddings stride = 512 seq_len = encodings.input_ids.size(1) nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(0, seq_len, stride)): end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # may be different from stride on last loop input_ids = encodings.input_ids[:, begin_loc:end_loc].to(args.device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) # loss is calculated using CrossEntropyLoss which averages over valid labels # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels # to the left by 1. neg_log_likelihood = outputs.loss nlls.append(neg_log_likelihood) if "xpu" in args.device: torch.xpu.empty_cache() prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).mean()) print("ppl result: {}".format(ppl.item()))