# Langchain Example The examples in this folder shows how to use [LangChain](https://www.langchain.com/) with `ipex-llm` on Intel GPU. > [!NOTE] > Please refer [here](https://python.langchain.com/docs/integrations/llms/ipex_llm) for upstream LangChain LLM documentation with ipex-llm and [here](https://python.langchain.com/docs/integrations/text_embedding/ipex_llm_gpu/) for upstream LangChain embedding documentation with ipex-llm. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#requirements) for more information. ## 1. Install ### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ ``` ### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ ``` ## 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ## 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. ### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 ```
### 3.2 Configurations for Windows
For Intel iGPU and Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ## 4. Run examples with LangChain ### 4.1. Example: Streaming Chat Install LangChain dependencies: ```bash pip install -U langchain langchain-community ``` In the current directory, run the example with command: ```bash python chat.py -m MODEL_PATH -q QUESTION ``` **Additional Parameters for Configuration:** - `-m MODEL_PATH`: **required**, path to the model - `-q QUESTION`: question to ask. Default is `What is AI?`. ### 4.2. Example: Retrival Augmented Generation (RAG) The RAG example ([rag.py](./rag.py)) shows how to load the input text into vector database, and then use LangChain to build a retrival pipeline. Install LangChain dependencies: ```bash pip install -U langchain langchain-community langchain-chroma sentence-transformers==3.0.1 ``` In the current directory, run the example with command: ```bash python rag.py -m -e [-q QUESTION] [-i INPUT_PATH] ``` **Additional Parameters for Configuration:** - `-m LLM_MODEL_PATH`: **required**, path to the model. - `-e EMBEDDING_MODEL_PATH`: **required**, path to the embedding model. - `-q QUESTION`: question to ask. Default is `What is IPEX-LLM?`. - `-i INPUT_PATH`: path to the input doc. ### 4.3. Example: Low Bit The low_bit example ([low_bit.py](./low_bit.py)) showcases how to use use LangChain with low_bit optimized model.LangChain By `save_low_bit` we save the weights of low_bit model into the target folder. > [!NOTE] > `save_low_bit` only saves the weights of the model. > Users could copy the tokenizer model into the target folder or specify `tokenizer_id` during initialization. Install LangChain dependencies: ```bash pip install -U langchain langchain-community ``` In the current directory, run the example with command: ```bash python low_bit.py -m -t [-q ] ``` **Additional Parameters for Configuration:** - `-m MODEL_PATH`: **Required**, the path to the model - `-t TARGET_PATH`: **Required**, the path to save the low_bit model - `-q QUESTION`: question to ask. Default is `What is AI?`.