# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import time import argparse from ipex_llm.transformers.npu_model import AutoModelForCausalLM from transformers import AutoTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Predict Tokens using `generate()` API for npu model" ) parser.add_argument( "--repo-id-or-model-path", type=str, default="openbmb/MiniCPM-1B-sft-bf16", help="The huggingface repo id for the Llama2 model to be downloaded" ", or the path to the huggingface checkpoint folder", ) parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") parser.add_argument("--max-context-len", type=int, default=1024) parser.add_argument("--max-prompt-len", type=int, default=512) parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) parser.add_argument("--save-directory", type=str, required=True, help="The path of folder to save converted model, " "If path not exists, lowbit model will be saved there. " "Else, lowbit model will be loaded.", ) args = parser.parse_args() model_path = args.repo_id_or_model_path if not os.path.exists(args.save_directory): model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, trust_remote_code=True, attn_implementation="eager", load_in_low_bit="sym_int4", optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, transpose_value_cache=not args.disable_transpose_value_cache, save_directory=args.save_directory ) else: model = AutoModelForCausalLM.load_low_bit( args.save_directory, attn_implementation="eager", torch_dtype=torch.float16, optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, transpose_value_cache=not args.disable_transpose_value_cache, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) print("-" * 80) print("done") with torch.inference_mode(): print("finish to load") for i in range(5): _input_ids = tokenizer.encode("<用户>{}".format(args.prompt), return_tensors="pt") print("input length:", len(_input_ids[0])) st = time.time() output = model.generate( _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict ) end = time.time() print(f"Inference time: {end-st} s") input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False) print("-" * 20, "Input", "-" * 20) print(input_str) output_str = tokenizer.decode(output[0], skip_special_tokens=False) print("-" * 20, "Output", "-" * 20) print(output_str) print("-" * 80) print("done") print("success shut down")