# Run Large Multimodal Model on Intel NPU In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). See the table blow for verified models. ## Verified Models | Model | Model Link | |------------|----------------------------------------------------------------| | Phi-3-Vision | [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) | | MiniCPM-Llama3-V-2_5 | [openbmb/MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5) | | MiniCPM-V-2_6 | [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) | | Bce-Embedding-Base-V1 | [maidalun1020/bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) | | Speech_Paraformer-Large | [iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch](https://www.modelscope.cn/models/iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch) | ## Requirements To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU. Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver. Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**. Right click and select **Update Driver** -> **Browse my computer for drivers**. And then manually select the unzipped driver folder to install. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a phi-3-vision model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs. ### 1. Install #### 1.1 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.10 libuv conda activate llm # install ipex-llm with 'npu' option pip install --pre --upgrade ipex-llm[npu] pip install torchvision # [optional] for MiniCPM-V-2_6 pip install timm torch==2.1.2 torchvision==0.16.2 # [optional] for Bce-Embedding-Base-V1 pip install BCEmbedding==0.1.5 transformers==4.40.0 # [optional] for Speech_Paraformer-Large pip install funasr==1.1.14 pip install modelscope==1.20.1 torch==2.1.2 torchaudio==2.1.2 ``` ### 2. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 2.1 Configurations for Windows > [!NOTE] > For optimal performance, we recommend running code in `conhost` rather than Windows Terminal: > - Press Win+R and input `conhost`, then press Enter to launch `conhost`. > - Run following command to use conda in `conhost`. Replace `` with your conda install location. > ``` > call \Scripts\activate > ``` **Following envrionment variables are required**: ```cmd set BIGDL_USE_NPU=1 ``` ### 3. Running examples ``` python ./generate.py ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Phi-3-vision model (e.g. `microsoft/Phi-3-vision-128k-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-vision-128k-instruct'`, and more verified models please see the list in [Verified Models](#verified-models). - `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load lowbit version of the model. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the lowbit model in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the converted lowbit version will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--load_in_low_bit`: argument defining the `load_in_low_bit` format used. It is default to be `sym_int8`, `sym_int4` can also be used. #### Sample Output ##### [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) ```log Inference time: xxxx s -------------------- Prompt -------------------- Message: [{'role': 'user', 'content': '<|image_1|>\nWhat is in the image?'}] Image link/path: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Output -------------------- What is in the image? The image shows a young girl holding a white teddy bear. She is wearing a pink dress with a heart on it. The background includes a stone ``` The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): ## 4. Run Optimized Models (Experimental) The examples below show how to run the **_optimized HuggingFace & FunASR model implementations_** on Intel NPU, including - [MiniCPM-Llama3-V-2_5](./minicpm-llama3-v2.5.py) - [MiniCPM-V-2_6](./minicpm_v_2_6.py) - [Speech_Paraformer-Large](./speech_paraformer-large.py) - [Bce-Embedding-Base-V1 ](./bce-embedding.py) ### 4.1 Run MiniCPM-Llama3-V-2_5 & MiniCPM-V-2_6 ```bash # to run MiniCPM-Llama3-V-2_5 python minicpm-llama3-v2.5.py --save-directory # to run MiniCPM-V-2_6 python minicpm_v_2_6.py --save-directory ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the model (i.e. `openbmb/MiniCPM-Llama3-V-2_5`) to be downloaded, or the path to the huggingface checkpoint folder. - `image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be 'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `What is in the image?`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--max-output-len MAX_OUTPUT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`. - `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`. - `--disable-transpose-value-cache`: Disable the optimization of transposing value cache. - `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded. #### Sample Output ##### [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) ```log Inference time: xx.xx s -------------------- Input -------------------- http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Prompt -------------------- What is in this image? -------------------- Output -------------------- The image features a young child holding and showing off a white teddy bear wearing a pink dress. The background includes some red flowers and a stone wall, suggesting an outdoor setting. ``` ### 4.2 Run Speech_Paraformer-Large ```bash # to run Speech_Paraformer-Large python speech_paraformer-large.py --save-directory ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the asr repo id for the model (i.e. `iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch`) to be downloaded, or the path to the asr checkpoint folder. - `--load_in_low_bit`: argument defining the `load_in_low_bit` format used. It is default to be `sym_int8`, `sym_int4` can also be used. - `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded. #### Sample Output ##### [iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch](https://www.modelscope.cn/models/iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch) ```log # speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav rtf_avg: 0.090: 100%|███████████████████████████████████| 1/1 [00:01<00:00, 1.18s/it] [{'key': 'asr_example', 'text': '正 是 因 为 存 在 绝 对 正 义 所 以 我 们 接 受 现 实 的 相 对 正 义 但 是 不 要 因 为 现 实 的 相 对 正 义 我 们 就 认 为 这 个 世 界 没 有 正 义 因 为 如 果 当 你 认 为 这 个 世 界 没 有 正 义'}] # https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav rtf_avg: 0.232: 100%|███████████████████████████████████| 1/1 [00:01<00:00, 1.29s/it] [{'key': 'asr_example_zh', 'text': '欢 迎 大 家 来 体 验 达 摩 院 推 出 的 语 音 识 别 模 型'}] ``` ### 4.3 Run Bce-Embedding-Base-V1 ```bash # to run Bce-Embedding-Base-V1 python bce-embedding.py --save-directory ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the asr repo id for the model (i.e. `maidalun1020/bce-embedding-base_v1`) to be downloaded, or the path to the asr checkpoint folder. - `--save-directory SAVE_DIRECTORY`: argument defining the path to save converted model. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, otherwise the lowbit model in `SAVE_DIRECTORY` will be loaded. #### Sample Output ##### [maidalun1020/bce-embedding-base_v1](https://huggingface.co/maidalun1020/bce-embedding-base_v1) | ```log Inference time: xxx s [[-0.00674987 -0.01700369 -0.0028928 ... -0.05296675 -0.00352772 0.00827096] [-0.04398304 0.00023038 0.00643183 ... -0.02717186 0.00483789 0.02298774]] ```