# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import numpy as np from bigdl.llm.transformers import AutoModelForCausalLM from transformers import AutoTokenizer # you could tune the prompt based on your own model, # here the prompt tuning is adpated from https://huggingface.co/RWKV/HF_v5-Eagle-7B def generate_prompt(instruction): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for RWKV5 model') parser.add_argument('--repo-id-or-model-path', type=str, default="RWKV/HF_v5-Eagle-7B", help='The huggingface repo id for the RWKV5 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # # Please note that for RWKV5 models, `optimize_model` is required to set as True # # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True, use_cache=True) model = model.to('xpu') # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = generate_prompt(instruction=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict) # start inference st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)