# Aquila In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Aquila models. For illustration purposes, we utilize the [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B) as a reference Aquila model. > **Note**: If you want to download the Hugging Face *Transformers* model, please refer to [here](https://huggingface.co/docs/hub/models-downloading#using-git). > > BigDL-LLM optimizes the *Transformers* model in INT4 precision at runtime, and thus no explicit conversion is needed. ## Requirements To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a Aquila model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.9 conda activate llm # below command will install intel_extension_for_pytorch==2.0.110+xpu as default # you can install specific ipex/torch version for your need pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments Info In the example, several arguments can be passed to satisfy your requirements: - `--repo-id-or-model-path`: str, argument defining the huggingface repo id for the Aquila model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'BAAI/AquilaChat-7B'`. - `--prompt`: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict`: int, argument defining the max number of tokens to predict. It is default to be `32`. #### Sample Output #### [BAAI/AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B) ```log Inference time: xxxx s -------------------- Prompt -------------------- Human: AI是什么?###Assistant: -------------------- Output -------------------- Human: AI是什么?###Assistant: AI是人工智能的缩写。人工智能是一种技术,旨在使计算机能够像人类一样思考、学习和执行任务。AI包括许多不同的技术和方法,例如机器 ```