# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pytest from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel from transformers import LlamaTokenizer, AutoTokenizer device = os.environ['DEVICE'] print(f'Running on {device}') if device == 'xpu': import intel_extension_for_pytorch as ipex @pytest.mark.parametrize('prompt, answer', [ ('What is the capital of France?\n\n', 'Paris') ]) @pytest.mark.parametrize('Model, Tokenizer, model_path',[ (AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH')), (AutoModel, AutoTokenizer, os.environ.get('CHATGLM2_6B_ORIGIN_PATH')), (AutoModelForCausalLM, AutoTokenizer, os.environ.get('FALCON_7B_ORIGIN_PATH')), (AutoModelForCausalLM, AutoTokenizer, os.environ.get('MPT_7B_ORIGIN_PATH')), ]) def test_completion(Model, Tokenizer, model_path, prompt, answer): tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True) model = Model.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True) model = model.to(device) input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) output = model.generate(input_ids, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) assert answer in output_str if __name__ == '__main__': pytest.main([__file__])