# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This would makes sure Python is aware there is more than one sub-package within bigdl, # physically located elsewhere. # Otherwise there would be module not found error in non-pip's setting as Python would # only search the first bigdl package and end up finding only one sub-package. import argparse import warnings from langchain.chains import LLMChain from langchain_community.llms import IpexLLM from langchain_core.prompts import PromptTemplate warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*") def main(args): question = args.question model_path = args.model_path # Below is the prompt format for LLaMa-2 according to # https://huggingface.co/meta-llama/Llama-2-7b-chat-hf # If you're using a different language model, # please adjust the template according to its own model card. template = """[INST] <>\n \n<>\n\n{question} [/INST]""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm = IpexLLM.from_model_id( model_id=model_path, model_kwargs={ "temperature": 0, "max_length": 64, "trust_remote_code": True, }, ) llm_chain = prompt | llm output = llm_chain.invoke(question) print("====output=====") print(output) if __name__ == '__main__': parser = argparse.ArgumentParser(description='TransformersLLM Langchain Chat Example') parser.add_argument('-m','--model-path', type=str, required=True, help='the path to transformers model') parser.add_argument('-q', '--question', type=str, default='What is AI?', help='qustion you want to ask.') args = parser.parse_args() main(args)