# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from transformers import FuyuProcessor import torch import argparse import time from PIL import Image from bigdl.llm.transformers import AutoModelForCausalLM if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Fuyu model') parser.add_argument('--repo-id-or-model-path', type=str, default="adept/fuyu-8b", help='The huggingface repo id for the Fuyu model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="Generate a coco-style caption.", help='Prompt to infer') parser.add_argument('--image-path', type=str, required=True, help='Image path for the input image that the chat will focus on') parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path prompt = args.prompt image = Image.open(args.image_path) # Load model # For successful BigDL-LLM optimization on Fuyu, skip the 'vision_embed_tokens' module during optimization model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu', load_in_4bit = True, trust_remote_code=True, modules_to_not_convert=['vision_embed_tokens']) # Load processor processor = FuyuProcessor.from_pretrained(model_path) # Generate predicted tokens with torch.inference_mode(): inputs = processor(text=prompt, images=image, return_tensors="pt") st = time.time() generation_outputs = model.generate(**inputs, max_new_tokens=args.n_predict) end = time.time() outputs = processor.batch_decode(generation_outputs[:, -args.n_predict:], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) for output in outputs: # '\x04' is the "beginning of answer" token # See https://huggingface.co/adept/fuyu-8b#how-to-use answer = output.split('\x04 ', 1)[1] if '\x04' in output else '' print(answer)