# Run Large Multimodal Model on Intel NPU In this directory, you will find examples on how you could apply IPEX-LLM INT4 or INT8 optimizations on Large Multimodal Models on [Intel NPUs](../../../README.md). See the table blow for verified models. ## Verified Models | Model | Model Link | |------------|----------------------------------------------------------------| | Phi-3-Vision | [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) | ## 0. Requirements To run these examples with IPEX-LLM on Intel NPUs, make sure to install the newest driver version of Intel NPU. Go to https://www.intel.com/content/www/us/en/download/794734/intel-npu-driver-windows.html to download and unzip the driver. Then go to **Device Manager**, find **Neural Processors** -> **Intel(R) AI Boost**. Right click and select **Update Driver**. And then manually select the folder unzipped from the driver. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a phi-3-vision model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel NPUs. ### 1. Install #### 1.1 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.10 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # below command will install intel_npu_acceleration_library pip install intel-npu-acceleration-library==1.3 pip install transformers==4.40 ``` ### 2. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 2.1 Configurations for Windows > [!NOTE] > For optimal performance, we recommend running code in `conhost` rather than Windows Terminal: > - Press Win+R and input `conhost`, then press Enter to launch `conhost`. > - Run following command to use conda in `conhost`. Replace `` with your conda install location. > ``` > call \Scripts\activate > ``` **Following envrionment variables are required**: ```cmd set BIGDL_USE_NPU=1 ``` ### 3. Running examples ``` python ./generate.py ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Phi-3-vision model (e.g. `microsoft/Phi-3-vision-128k-instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'microsoft/Phi-3-vision-128k-instruct'`, and more verified models please see the list in [Verified Models](#verified-models). - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--load_in_low_bit`: argument defining the `load_in_low_bit` format used. It is default to be `sym_int8`, `sym_int4` can also be used. #### Sample Output #### [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) ```log Inference time: xxxx s -------------------- Prompt -------------------- Message: [{'role': 'user', 'content': '<|image_1|>\nWhat is in the image?'}] Image link/path: http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg -------------------- Output -------------------- What is in the image? The image shows a young girl holding a white teddy bear. She is wearing a pink dress with a heart on it. The background includes a stone ``` The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):