# Qwen1.5
In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Qwen1.5 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat) as a reference InternLM model.
## 0. Requirements
To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Qwen1.5 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.37.0 # install transformers which supports Qwen2
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install transformers==4.37.2 # install transformers which supports Qwen2
```
### 2. Configures OneAPI environment variables
#### 2.1 Configurations for Linux
```bash
source /opt/intel/oneapi/setvars.sh
```
#### 2.2 Configurations for Windows
```cmd
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
```
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
 
For Intel Data Center GPU Max Series
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 
#### 3.2 Configurations for Windows
For Intel iGPU
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
 
For Intel Arc™ A300-Series or Pro A60
```cmd
set SYCL_CACHE_PERSISTENT=1
```
 
For other Intel dGPU Series
There is no need to set further environment variables.
 
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Qwen1.5 model (e.g. `Qwen/Qwen1.5-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'Qwen/Qwen1.5-7B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
#### [Qwen/Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
AI是什么?<|im_end|>
<|im_start|>assistant
-------------------- Output --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
AI是什么?<|im_end|>
<|im_start|>assistant
AI(Artificial Intelligence)是指计算机科学的一个分支,其目标是创建能够理解、学习、推理和自我修正的智能机器。AI系统可以通过
```
```log
Inference time: xxxx s
-------------------- Prompt --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is AI?<|im_end|>
<|im_start|>assistant
-------------------- Output --------------------
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is AI?<|im_end|>
<|im_start|>assistant
AI stands for Artificial Intelligence, which is a field of computer science that focuses on creating intelligent machines that can perform tasks that typically require human intelligence, such as learning
```