# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import os import pytest import time import torch from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq from transformers import AutoTokenizer class TestTransformersAPI(unittest.TestCase): def setUp(self): thread_num = os.environ.get('THREAD_NUM') if thread_num is not None: self.n_threads = int(thread_num) else: self.n_threads = 2 def test_transformers_auto_model_int4(self): model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH') model = AutoModel.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) input_str = "Tell me the capital of France.\n\n" with torch.inference_mode(): st = time.time() input_ids = tokenizer.encode(input_str, return_tensors="pt") output = model.generate(input_ids, do_sample=False, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) end = time.time() print('Prompt:', input_str) print('Output:', output_str) print(f'Inference time: {end-st} s') res = 'Paris' in output_str self.assertTrue(res) def test_transformers_auto_model_for_causal_lm_int4(self): model_path = os.environ.get('ORIGINAL_REPLIT_CODE_PATH') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) input_str = 'def hello():\n print("hello world")\n' model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True) with torch.inference_mode(): st = time.time() input_ids = tokenizer.encode(input_str, return_tensors="pt") output = model.generate(input_ids, do_sample=False, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) end = time.time() print('Prompt:', input_str) print('Output:', output_str) print(f'Inference time: {end-st} s') res = '\nhello()' in output_str self.assertTrue(res) def test_transformers_auto_model_for_speech_seq2seq_int4(self): from transformers import WhisperProcessor, WhisperForConditionalGeneration from datasets import load_from_disk model_path = os.environ.get('ORIGINAL_WHISPER_TINY_PATH') dataset_path = os.environ.get('SPEECH_DATASET_PATH') processor = WhisperProcessor.from_pretrained(model_path) ds = load_from_disk(dataset_path) sample = ds[0]["audio"] input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True) with torch.inference_mode(): st = time.time() predicted_ids = model.generate(input_features) # decode token ids to text transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) end = time.time() print('Output:', transcription) print(f'Inference time: {end-st} s') res = 'Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' in transcription[0] self.assertTrue(res) def test_transformers_chatglm_for_causallm(self): from bigdl.llm.transformers import ChatGLMForCausalLM model_path = os.environ.get('ORIGINAL_CHATGLM2_6B_PATH') model = ChatGLMForCausalLM.from_pretrained(model_path, native=False, trust_remote_code=True, load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) input_str = "Tell me the capital of France.\n\n" with torch.inference_mode(): st = time.time() input_ids = tokenizer.encode(input_str, return_tensors="pt") output = model.generate(input_ids, do_sample=False, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) end = time.time() print('Prompt:', input_str) print('Output:', output_str) print(f'Inference time: {end-st} s') res = 'Paris' in output_str self.assertTrue(res) if __name__ == '__main__': pytest.main([__file__])