# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import pdb import sys import csv import json import datetime import pandas as pd if __name__ == '__main__': result_path = sys.argv[1] output_path = sys.argv[2] column_size = [25, 15, 10, 18, 15, 10, 10, 10] pad_string = lambda x, l: [i.ljust(j) for i, j in zip(x, l)] column_names = ["Model Name", "Precision", "STEM", "Social Science", "Humanities", "Other", "Hard", "Average"] print(f'\nDumping results for C-Eval score:\n') print(' '.join(pad_string(column_names, column_size))) print() file_lst = os.listdir(result_path) file_lst = [f'{result_path}/{i}' for i in file_lst] organized_dict = {} # {'Qwen-7B': {'sym_int4': [], 'mixed_fp4': }} for file in file_lst: # Read the JSON file with open(file, 'r') as file: data = json.load(file) result_lst = [data['Model Name'], data['Precision']] result_lst += data['Results'] # store in the organized dictionary try: organized_dict[data['Model Name']][data['Precision']] = result_lst except: organized_dict[data['Model Name']] = {} organized_dict[data['Model Name']][data['Precision']] = result_lst # define the print precision order model_order = ['chatglm2-6b', 'chinese-llama2-7b', 'Qwen-7B-Chat'] precision_order = ['sym_int4', 'fp8_e5m2'] # print the results for model_name in organized_dict.keys(): for precision in precision_order: try: # print the result print(' '.join(pad_string(organized_dict[model_name][precision], column_size))) except KeyError: pass # separate between models print() # initialize the csv file current_date = datetime.datetime.now().strftime("%Y-%m-%d") file_name = f'results_{current_date}.csv' file_name = os.path.join(output_path, file_name) if output_path else file_name print('Writing to', file_name) with open(file_name, mode='w', newline='') as csv_file: writer = csv.writer(csv_file) headers = ["Model Name", "Precision", 'STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average'] writer.writerow(headers) # print the results for model_name in model_order: for precision in precision_order: try: # write the result to the csv row writer.writerow(organized_dict[model_name][precision]) except KeyError: writer.writerow([model_name, precision]+[pd.NA for i in range(len(headers[2:]))])