# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import csv import os import re import glob if __name__ == '__main__': parser = argparse.ArgumentParser( 'Process the logs of benchmark utils and output a csv file of performance data', add_help=False) parser.add_argument('-m', '--log-dir', default="./", type=str) parser.add_argument('--output-path', default="./model_latency.csv", type=str) args = parser.parse_args() print(args) result_list = [] for filename in glob.glob(os.path.join(args.log_dir, '*')): try: basename = os.path.basename(filename) name, _ = os.path.splitext(basename) model_name, prompt_length, output_length = name.strip().split('-') with open(filename, 'r', encoding='utf-8') as f: log = f.read() first_token_time_list = sorted(map(float, re.findall(r'First token cost (.*?)s', log))) rest_token_time_list = sorted(map(float, re.findall(r'Rest tokens cost average (.*?)s', log))) # For fairness, remove the fastest and slowest data first_token_latency = sum(first_token_time_list[1:-1] )/(len(first_token_time_list)-2) rest_token_latency = sum(rest_token_time_list[1:-1] )/(len(rest_token_time_list)-2) result_list.append({ 'model_name': model_name, 'prompt_length': prompt_length, 'output_length': output_length, 'first_token_latency': first_token_latency, 'rest_token_latency': rest_token_latency, }) except Exception as e: print(e.args) continue with open(args.output_path, 'w', encoding='utf-8', newline='') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=result_list[0].keys()) writer.writeheader() writer.writerows(result_list) print('Log analysis finished!')