# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import transformers import deepspeed def get_int_from_env(env_keys, default): """Returns the first positive env value found in the `env_keys` list or the default.""" for e in env_keys: val = int(os.environ.get(e, -1)) if val >= 0: return val return int(default) local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0") world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1") os.environ["RANK"] = str(local_rank) os.environ["WORLD_SIZE"] = str(world_size) os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500") from ipex_llm import optimize_model import torch import time import argparse from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it from transformers import LlamaTokenizer, AutoTokenizer from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator from deepspeed.accelerator import set_accelerator, get_accelerator from intel_extension_for_deepspeed import XPU_Accelerator if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit # First use CPU as accelerator # Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage current_accel = CPU_Accelerator() set_accelerator(current_accel) model = AutoModelForCausalLM.from_pretrained(args.repo_id_or_model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True, torch_dtype=torch.float16, trust_remote_code=True, use_cache=True) model = deepspeed.init_inference( model, mp_size=world_size, dtype=torch.float16, replace_method="auto", ) # Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format # Convert the rest of the model into float16 to reduce allreduce traffic model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16) # Next, use XPU as accelerator to speed up inference current_accel = XPU_Accelerator() set_accelerator(current_accel) # Move model back to xpu model = model.to(f'xpu:{local_rank}') # Modify backend related settings if world_size > 1: get_accelerator().set_device(local_rank) dist_backend = get_accelerator().communication_backend_name() import deepspeed.comm.comm deepspeed.comm.comm.cdb = None from deepspeed.comm.comm import init_distributed init_distributed() print(model) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = args.prompt input_ids = tokenizer.encode(prompt, return_tensors="pt").to(f'xpu:{local_rank}') # ipex_llm model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict, use_cache=True) # start inference st = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with IPEX-LLM INT4 optimizations output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() if local_rank == 0: output = output.cpu() actual_output_len = output.shape[1] - input_ids.shape[1] output_str = tokenizer.decode(output[0], skip_special_tokens=True) avg_time = (end - st) / actual_output_len * 1000 print(f'Inference time of generating {actual_output_len} tokens: {end-st} s, average token latency is {avg_time} ms/token.') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str) deepspeed.comm.destroy_process_group() print("process group destroyed, exiting...")