# DLlib Quickstarts --- ![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/dllib/colab-notebook/dllib_keras_api.ipynb)  ![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/dllib/colab-notebook/dllib_keras_api.ipynb) --- **In this guide we will demonstrate how to use _DLlib keras style api_ and _DLlib NNClassifier_ for classification.** ### **Step 0: Prepare Environment** We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the environment. Please refer to the [install guide](../Overview/chronos.html#install) for more details. ```bash conda create -n my_env python=3.7 # "my_env" is conda environment name, you can use any name you like. conda activate my_env pip install bigdl-dllib ``` ### Step 1: Data loading and processing using Spark DataFrame ```python df = spark.read.csv(path, sep=',', inferSchema=True).toDF("num_times_pregrant", "plasma_glucose", "blood_pressure", "skin_fold_thickness", "2-hour_insulin", "body_mass_index", "diabetes_pedigree_function", "age", "class") ``` We process the data using Spark API and split the data into train and test set. ```python vecAssembler = VectorAssembler(outputCol="features") vecAssembler.setInputCols(["num_times_pregrant", "plasma_glucose", "blood_pressure", "skin_fold_thickness", "2-hour_insulin", "body_mass_index", "diabetes_pedigree_function", "age"]) train_df = vecAssembler.transform(df) changedTypedf = train_df.withColumn("label", train_df["class"].cast(DoubleType())+lit(1))\ .select("features", "label") (trainingDF, validationDF) = changedTypedf.randomSplit([0.9, 0.1]) ``` ### Step 3: Define classification model using DLlib keras style api ```python x1 = Input(shape=(8,)) dense1 = Dense(12, activation='relu')(x1) dense2 = Dense(8, activation='relu')(dense1) dense3 = Dense(2)(dense2) model = Model(x1, dense3) ``` ### Step 4: Create NNClassifier and Fit NNClassifier ```python classifier = NNClassifier(model, CrossEntropyCriterion(), [8]) \ .setOptimMethod(Adam()) \ .setBatchSize(32) \ .setMaxEpoch(150) nnModel = classifier.fit(trainingDF) ``` ### Step 5: Evaluate the trained model ```python predictionDF = nnModel.transform(validationDF).cache() predictionDF.sample(False, 0.1).show() evaluator = MulticlassClassificationEvaluator( labelCol="label", predictionCol="prediction", metricName="accuracy") accuracy = evaluator.evaluate(predictionDF) ```