# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py # which is licensed under the MIT license: # # MIT License # # Copyright (c) 2023 MIT HAN Lab # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import argparse import sys # todo: support more model class from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig from transformers import TextIteratorStreamer from transformers.tools.agents import StopSequenceCriteria from transformers.generation.stopping_criteria import StoppingCriteriaList from colorama import Fore from bigdl.llm import optimize_model from kv_cache import StartRecentKVCache HUMAN_ID = "" BOT_ID = "" @torch.no_grad() def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len): print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="") outputs = model( input_ids=input_ids, past_key_values=past_key_values, use_cache=True, ) past_key_values = outputs.past_key_values pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) generated_ids = [pred_token_idx.item()] pos = 0 for _ in range(max_gen_len - 1): outputs = model( input_ids=pred_token_idx, past_key_values=past_key_values, use_cache=True, ) past_key_values = outputs.past_key_values pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) generated_ids.append(pred_token_idx.item()) generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True, spaces_between_special_tokens=False) now = len(generated_text) - 1 if now > pos: if '\n<' in generated_text: break else: print("".join(generated_text[pos:now]), end="", flush=True) pos = now if pred_token_idx == tokenizer.eos_token_id: break print(" ".join(generated_text[pos:]).strip('\n<'), flush=True) return past_key_values @torch.no_grad() def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512): past_key_values = None while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) if user_input == "stop": # let's stop the conversation when user input "stop" break prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} " input_ids = tokenizer(prompt, return_tensors="pt").input_ids seq_len = input_ids.shape[1] if kv_cache is not None: space_needed = seq_len + max_gen_len past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) past_key_values = greedy_generate( model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len ) @torch.no_grad() def chatglm2_stream_chat(model, tokenizer): chat_history = [] past_key_values = None current_length = 0 stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)]) max_past_length = 2048 while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) if user_input == "stop": # let's stop the conversation when user input "stop" break print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="") prompt = f"问:{user_input}\n答:" for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt, history=chat_history, stopping_criteria=stopping_criteria, past_key_values=past_key_values, return_past_key_values=True): print(response[current_length:], end="", flush=True) current_length = len(response) if past_key_values[0][0].shape[0] > max_past_length: # To avoid out of memory, only keep recent key_values new_values_list = [] for i in range(len(past_key_values)): new_value = [] for val in past_key_values[i]: new_v = val[-max_past_length:] new_value.append(new_v) new_values_list.append(tuple(new_value)) past_key_values = tuple(new_values_list) def auto_select_model(model_name): try: try: model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype="auto", trust_remote_code=True, use_cache=True) except: model = AutoModel.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype="auto", trust_remote_code=True, use_cache=True) except: print("Sorry, the model you entered is not supported in installer.") sys.exit() return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, help="path to an llm") args = parser.parse_args() model_path = args.model_path model = auto_select_model(model_path) model = optimize_model(model) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) if model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel": chatglm2_stream_chat(model=model, tokenizer=tokenizer) else: kv_cache = StartRecentKVCache() stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)