.. meta::
   :google-site-verification: S66K6GAclKw1RroxU0Rka_2d1LZFVe27M0gRneEsIVI
################################################
The BigDL Project
################################################
------
************************************************
BigDL-LLM
************************************************
.. raw:: html
   
      bigdl-llm is a library for running LLM (large language model) on Intel XPU (from Laptop to GPU to Cloud) using INT4/FP4/INT8/FP8 with very low latency [1] (for any PyTorch model).
   
.. note::
   It is built on top of the excellent work of `llama.cpp `_, `gptq `_, `bitsandbytes `_, `qlora `_, etc.
============================================
Latest update 🔥
============================================
- [2024/02] Users can now use ``bigdl-llm`` through `Text-Generation-WebUI `_ GUI.
- [2024/02] ``bigdl-llm`` now supports `Self-Speculative Decoding `_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU `_ and `CPU `_ respectively.
- [2024/02] ``bigdl-llm`` now supports a comprehensive list of LLM finetuning on Intel GPU (including `LoRA `_, `QLoRA `_, `DPO `_, `QA-LoRA `_ and `ReLoRA `_).
- [2024/01] Using ``bigdl-llm`` `QLoRA `_, we managed to finetune LLaMA2-7B in **21 minutes** and LLaMA2-70B in **3.14 hours** on 8 Intel Max 1550 GPU for `Standford-Alpaca `_ (see the blog `here `_).
- [2024/01] 🔔🔔🔔 **The default** ``bigdl-llm`` **GPU Linux installation has switched from PyTorch 2.0 to PyTorch 2.1, which requires new oneAPI and GPU driver versions. (See the** `GPU installation guide `_ **for more details.)**
- [2023/12] ``bigdl-llm`` now supports `ReLoRA `_ (see `"ReLoRA: High-Rank Training Through Low-Rank Updates" `_).
- [2023/12] ``bigdl-llm`` now supports `Mixtral-8x7B `_ on both Intel `GPU `_ and `CPU `_.
- [2023/12] ``bigdl-llm`` now supports `QA-LoRA `_ (see `"QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models" `_).
- [2023/12] ``bigdl-llm`` now supports `FP8 and FP4 inference `_ on Intel **GPU**.
- [2023/11] Initial support for directly loading `GGUF `_, `AWQ `_ and `GPTQ `_ models in to ``bigdl-llm`` is available.
- [2023/11] ``bigdl-llm`` now supports `vLLM continuous batching `_ on both Intel `GPU  `_ and `CPU `_.
- [2023/10] ``bigdl-llm`` now supports `QLoRA finetuning `_ on both Intel `GPU `_ and `CPU `_.
- [2023/10] ``bigdl-llm`` now supports `FastChat serving `_ on on both Intel CPU and GPU.
- [2023/09] ``bigdl-llm`` now supports `Intel GPU `_ (including Arc, Flex and MAX)
- [2023/09] ``bigdl-llm`` `tutorial `_ is released.
- Over 30 models have been verified on ``bigdl-llm``, including *LLaMA/LLaMA2, ChatGLM2/ChatGLM3, Mistral, Falcon, MPT, LLaVA, WizardCoder, Dolly, Whisper, Baichuan/Baichuan2, InternLM, Skywork, QWen/Qwen-VL, Aquila, MOSS* and more; see the complete list `here `_.
============================================
``bigdl-llm`` demos
============================================
See the **optimized performance** of ``chatglm2-6b`` and ``llama-2-13b-chat`` models on 12th Gen Intel Core CPU and Intel Arc GPU below.
.. raw:: html
   
   
      
         | 12th Gen Intel Core CPU | 
         Intel Arc GPU | 
      
      
         
             
          | 
         
             
          | 
         
             
          | 
         
             
          | 
      
      
         chatglm2-6b | 
         llama-2-13b-chat | 
         chatglm2-6b | 
         llama-2-13b-chat | 
      
   
============================================
``bigdl-llm`` quickstart
============================================
- `CPU <#cpu-quickstart>`_
- `GPU <#gpu-quickstart>`_
--------------------------------------------
CPU Quickstart
--------------------------------------------
You may install ``bigdl-llm`` on Intel CPU as follows as follows:
.. note::
   See the `CPU installation guide `_ for more details.
.. code-block:: console
   pip install --pre --upgrade bigdl-llm[all]
.. note::
   ``bigdl-llm`` has been tested on Python 3.9, 3.10 and 3.11
You can then apply INT4 optimizations to any Hugging Face *Transformers* models as follows.
.. code-block:: python
   #load Hugging Face Transformers model with INT4 optimizations
   from bigdl.llm.transformers import AutoModelForCausalLM
   model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
   #run the optimized model on Intel CPU
   from transformers import AutoTokenizer
   tokenizer = AutoTokenizer.from_pretrained(model_path)
   input_ids = tokenizer.encode(input_str, ...)
   output_ids = model.generate(input_ids, ...)
   output = tokenizer.batch_decode(output_ids)
--------------------------------------------
GPU Quickstart
--------------------------------------------
You may install ``bigdl-llm`` on Intel GPU as follows as follows:
.. note::
   See the `GPU installation guide `_ for more details.
.. code-block:: console
   # below command will install intel_extension_for_pytorch==2.1.10+xpu as default
   pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
.. note::
   ``bigdl-llm`` has been tested on Python 3.9, 3.10 and 3.11
You can then apply INT4 optimizations to any Hugging Face *Transformers* models on Intel GPU as follows.
.. code-block:: python
   #load Hugging Face Transformers model with INT4 optimizations
   from bigdl.llm.transformers import AutoModelForCausalLM
   model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
   #run the optimized model on Intel GPU
   model = model.to('xpu')
   from transformers import AutoTokenizer
   tokenizer = AutoTokenizer.from_pretrained(model_path)
   input_ids = tokenizer.encode(input_str, ...).to('xpu')
   output_ids = model.generate(input_ids, ...)
   output = tokenizer.batch_decode(output_ids.cpu())
**For more details, please refer to the bigdl-llm** `Document `_, `Readme `_, `Tutorial `_ and `API Doc `_.
------
************************************************
Overview of the complete BigDL project
************************************************
`BigDL `_ seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:
- `LLM `_: Low-bit (INT3/INT4/INT5/INT8) large language model library for Intel CPU/GPU
- `Orca `_: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray
- `Nano `_: Transparent Acceleration of Tensorflow & PyTorch Programs on Intel CPU/GPU
- `DLlib `_: "Equivalent of Spark MLlib" for Deep Learning
- `Chronos `_: Scalable Time Series Analysis using AutoML
- `Friesian `_: End-to-End Recommendation Systems
- `PPML `_: Secure Big Data and AI (with SGX Hardware Security)
------
************************************************
Choosing the right BigDL library
************************************************
.. graphviz::
    digraph BigDLDecisionTree {
        graph [pad=0.1 ranksep=0.3 tooltip=" "]
        node [color="#0171c3" shape=box fontname="Arial" fontsize=14 tooltip=" "]
        edge [tooltip=" "]
        
        Feature1 [label="Hardware Secured Big Data & AI?"]
        Feature2 [label="Python vs. Scala/Java?"]
        Feature3 [label="What type of application?"]
        Feature4 [label="Domain?"]
        
        LLM[href="https://github.com/intel-analytics/BigDL/blob/main/python/llm" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-LLM document"]
        Orca[href="../doc/Orca/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Orca document"]
        Nano[href="../doc/Nano/index.html" target="_blank" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Nano document"]
        DLlib1[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
        DLlib2[label="DLlib" href="../doc/DLlib/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-DLlib document"]
        Chronos[href="../doc/Chronos/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Chronos document"]
        Friesian[href="../doc/Friesian/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-Friesian document"]
        PPML[href="../doc/PPML/index.html" target="_blank" style="rounded,filled" fontcolor="#ffffff" tooltip="Go to BigDL-PPML document"]
        
        ArrowLabel1[label="No" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel2[label="Yes" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel3[label="Python" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel4[label="Scala/Java" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel5[label="Large Language Model" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel6[label="Big Data + \n AI (TF/PyTorch)" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel7[label="Accelerate \n TensorFlow / PyTorch" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel8[label="DL for Spark MLlib" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel9[label="High Level App Framework" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel10[label="Time Series" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        ArrowLabel11[label="Recommender System" fontsize=12 width=0.1 height=0.1 style=filled color="#c9c9c9"]
        
        Feature1 -> ArrowLabel1[dir=none]
        ArrowLabel1 -> Feature2
        Feature1 -> ArrowLabel2[dir=none]
        ArrowLabel2 -> PPML
        
        Feature2 -> ArrowLabel3[dir=none]
        ArrowLabel3 -> Feature3
        Feature2 -> ArrowLabel4[dir=none]
        ArrowLabel4 -> DLlib1
        
        Feature3 -> ArrowLabel5[dir=none]
        ArrowLabel5 -> LLM
        Feature3 -> ArrowLabel6[dir=none]
        ArrowLabel6 -> Orca
        Feature3 -> ArrowLabel7[dir=none]
        ArrowLabel7 -> Nano
        Feature3 -> ArrowLabel8[dir=none]
        ArrowLabel8 -> DLlib2
        Feature3 -> ArrowLabel9[dir=none]
        ArrowLabel9 -> Feature4
     
        Feature4 -> ArrowLabel10[dir=none]
        ArrowLabel10 -> Chronos
        Feature4 -> ArrowLabel11[dir=none]
        ArrowLabel11 -> Friesian
    }
------
.. raw:: html
    
        
            
               Performance varies by use, configuration and other factors. bigdl-llm may not optimize to the same degree for non-Intel products. Learn more at www.Intel.com/PerformanceIndex.