# Run IPEX-LLM on Multiple Intel GPUs in pipeline parallel fashion This example demonstrates how to run IPEX-LLM optimized low-bit model vertically partitioned on two [Intel GPUs](../README.md). ## Requirements To run this example with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. For this particular example, you will need at least two GPUs on your machine. ## Example: ### 1.1 Install IPEX-LLM ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default # you can install specific ipex/torch version for your need pip install --pre --upgrade ipex-llm[xpu_2.1] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # configures OneAPI environment variables source /opt/intel/oneapi/setvars.sh conda install -c conda-forge -y gperftools=2.10 # to enable tcmalloc ``` ### 1.2 Build and install patched version of Intel Extension for PyTorch (IPEX) ```bash conda activate llm source /opt/intel/oneapi/setvars.sh git clone https://github.com/intel/intel-extension-for-pytorch.git cd intel-extension-for-pytorch git checkout v2.1.10+xpu git submodule update --init --recursive git cherry-pick be8ea24078d8a271e53d2946ac533383f7a2aa78 export USE_AOT_DEVLIST='ats-m150,pvc' python setup.py install ``` > **Important**: IPEX 2.1.10+xpu requires IntelĀ® oneAPI Base Toolkit's version == 2024.0. Please make sure you have installed the correct version. ### 2. Run pipeline parallel inference on multiple GPUs Here, we provide example usages on different models and different hardwares. Please refer to the appropriate script based on your model and device: ### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --gpu-num GPU_NUM ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--gpu-num GPU_NUM`: argument defining the number of GPU to use. It is default to be `2`. #### Sample Output #### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) ```log Inference time: xxxx s -------------------- Prompt -------------------- [INST] <> <> What is AI? [/INST] -------------------- Output -------------------- [INST] <> <> What is AI? [/INST] Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence, ```