## BigDL-LLM
**`bigdl-llm`** is a library for running ***LLM*** (language language model) on your Intel ***laptop*** using INT4 with very low latency (for any Hugging Face *Transformers* model).
*(It is built on top of the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [gptq](https://github.com/IST-DASLab/gptq), [ggml](https://github.com/ggerganov/ggml), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.)*
### Demos
See the ***optimized performance*** of `phoenix-inst-chat-7b`, `vicuna-13b-v1.1`, and `starcoder-15b` models on a 12th Gen Intel Core CPU below.
### Working with `bigdl-llm`
Table of Contents
- [Install](#install)
- [Download Model](#download-model)
- [Run Model](#run-model)
- [CLI Tool](#cli-tool)
- [Hugging Face `transformers`-style API](#hugging-face-transformers-style-api)
- [LangChain API](#langchain-api)
- [`llama-cpp-python`-style API](#llama-cpp-python-style-api)
- [`bigdl-llm` Dependence](#bigdl-llm-dependence)
#### Install
You may install **`bigdl-llm`** as follows:
```bash
pip install --pre --upgrade bigdl-llm[all]
```
#### Download Model
You may download any PyTorch model in Hugging Face *Transformers* format (including *FP16* or *FP32* or *GPTQ-4bit*).
#### Run Model
You may run the models using **`bigdl-llm`** through one of the following APIs:
1. [CLI (command line interface) Tool](#cli-tool)
2. [Hugging Face `transformers`-style API](#hugging-face-transformers-style-api)
3. [LangChain API](#langchain-api)
4. [`llama-cpp-python`-style API](#llama-cpp-python-style-api)
#### CLI Tool
>**Note**: Currently `bigdl-llm` CLI supports *LLaMA* (e.g., *vicuna*), *GPT-NeoX* (e.g., *redpajama*), *BLOOM* (e.g., *pheonix*) and *GPT2* (e.g., *starcoder*) model architecture; for other models, you may use the `transformers`-style or LangChain APIs.
- ##### Convert model
You may convert the downloaded model into native INT4 format using `llm-convert`.
```bash
#convert PyTorch (fp16 or fp32) model;
#llama/bloom/gptneox/starcoder model family is currently supported
llm-convert "/path/to/model/" --model-format pth --model-family "bloom" --outfile "/path/to/output/"
#convert GPTQ-4bit model
#only llama model family is currently supported
llm-convert "/path/to/model/" --model-format gptq --model-family "llama" --outfile "/path/to/output/"
```
- ##### Run model
You may run the converted model using `llm-cli` or `llm-chat` (*built on top of `main.cpp` in [llama.cpp](https://github.com/ggerganov/llama.cpp)*)
```bash
#help
#llama/bloom/gptneox/starcoder model family is currently supported
llm-cli -x gptneox -h
#text completion
#llama/bloom/gptneox/starcoder model family is currently supported
llm-cli -t 16 -x gptneox -m "/path/to/output/model.bin" -p 'Once upon a time,'
#chat mode
#llama/gptneox model family is currently supported
llm-chat -m "/path/to/output/model.bin" -x llama
```
#### Hugging Face `transformers`-style API
You may run the models using `transformers`-style API in `bigdl-llm`.
- ##### Using Hugging Face `transformers` INT4 format
You may apply INT4 optimizations to any Hugging Face *Transformers* models as follows.
```python
#load Hugging Face Transformers model with INT4 optimizations
from bigdl.llm.transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_4bit=True)
#run the optimized model
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)
input_ids = tokenizer.encode(input_str, ...)
output_ids = model.generate(input_ids, ...)
output = tokenizer.batch_decode(output_ids)
```
See the complete example [here](example/transformers/transformers_int4/transformers_int4_pipeline.py).
Notice: For more quantized precision, you can use another parameter `load_in_low_bit`. Available types are `sym_int4`, `asym_int4`, `sym_int5`, `asym_int5` and `sym_int8`.
```python
model = AutoModelForCausalLM.from_pretrained('/path/to/model/', load_in_low_bit="sym_int5")
```
- ##### Using native INT4 format
You may also convert Hugging Face *Transformers* models into native INT4 format for maximum performance as follows.
>**Note**: Currently only llama/bloom/gptneox/starcoder model family is supported; for other models, you may use the Transformers INT4 format as described above).
```python
#convert the model
from bigdl.llm import llm_convert
bigdl_llm_path = llm_convert(model='/path/to/model/',
outfile='/path/to/output/', outtype='int4', model_family="llama")
#load the converted model
from bigdl.llm.transformers import BigdlNativeForCausalLM
llm = BigdlNativeForCausalLM.from_pretrained("/path/to/output/model.bin",...)
#run the converted model
input_ids = llm.tokenize(prompt)
output_ids = llm.generate(input_ids, ...)
output = llm.batch_decode(output_ids)
```
See the complete example [here](example/transformers/native_int4/native_int4_pipeline.py).
#### LangChain API
You may run the models using the LangChain API in `bigdl-llm`.
- **Using Hugging Face `transformers` INT4 format**
You may run any Hugging Face *Transformers* model (with INT4 optimiztions applied) using the LangChain API as follows:
```python
from bigdl.llm.langchain.llms import TransformersLLM
from bigdl.llm.langchain.embeddings import TransformersEmbeddings
from langchain.chains.question_answering import load_qa_chain
embeddings = TransformersEmbeddings.from_model_id(model_id=model_path)
bigdl_llm = TransformersLLM.from_model_id(model_id=model_path, ...)
doc_chain = load_qa_chain(bigdl_llm, ...)
output = doc_chain.run(...)
```
See the examples [here](example/langchain/transformers_int4).
- **Using native INT4 format**
You may also convert Hugging Face *Transformers* models into *native INT4* format (currently only *llama*/*bloom*/*gptneox*/*starcoder* model family is supported), and then run the converted models using the LangChain API as follows.
>**Note**: Currently only llama/bloom/gptneox/starcoder model family is supported; for other models, you may use the Transformers INT4 format as described above).
```python
from bigdl.llm.langchain.llms import BigdlNativeLLM
from bigdl.llm.langchain.embeddings import BigdlNativeEmbeddings
from langchain.chains.question_answering import load_qa_chain
embeddings = BigdlNativeEmbeddings(model_path='/path/to/converted/model.bin',
model_family="llama",...)
bigdl_llm = BigdlNativeLLM(model_path='/path/to/converted/model.bin',
model_family="llama",...)
doc_chain = load_qa_chain(bigdl_llm, ...)
doc_chain.run(...)
```
See the examples [here](example/langchain/native_int4).
#### `llama-cpp-python`-style API
You may also run the converted models using the `llama-cpp-python`-style API in `bigdl-llm` as follows.
```python
from bigdl.llm.models import Llama, Bloom, Gptneox
llm = Bloom("/path/to/converted/model.bin", n_threads=4)
result = llm("what is ai")
```
### `bigdl-llm` Dependence
The native code/lib in `bigdl-llm` has been built using the following tools; in particular, lower `LIBC` version on your Linux system may be incompatible with `bigdl-llm`.
| Model family | Platform | Compiler | GLIBC |
| ------------ | -------- | ------------------ | ----- |
| llama | Linux | GCC 11.2.1 | 2.17 |
| llama | Windows | MSVC 19.36.32532.0 | |
| llama | Windows | GCC 13.1.0 | |
| gptneox | Linux | GCC 11.2.1 | 2.17 |
| gptneox | Windows | MSVC 19.36.32532.0 | |
| gptneox | Windows | GCC 13.1.0 | |
| bloom | Linux | GCC 11.2.1 | 2.29 |
| bloom | Windows | MSVC 19.36.32532.0 | |
| bloom | Windows | GCC 13.1.0 | |
| starcoder | Linux | GCC 11.2.1 | 2.29 |
| starcoder | Windows | MSVC 19.36.32532.0 | |
| starcoder | Windows | GCC 13.1.0 | |