# Llama3.2-Vision In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate Llama3.2-Vision models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) as a reference Llama3.2-Vision model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a Llama3.2-Vision model to predict the next N tokens using `generate()` API, with IPEX-LLM 'optimize_model' API on Intel GPUs. ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.45.0 ``` #### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==4.45.0 ``` ### 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 export BIGDL_LLM_XMX_DISABLED=1 ```
#### 3.2 Configurations for Windows
For Intel iGPU ```cmd set SYCL_CACHE_PERSISTENT=1 set BIGDL_LLM_XMX_DISABLED=1 ```
For Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples ``` python ./generate.py ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama3.2-Vision model (e.g. `meta-llama/Llama-3.2-11B-Vision-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-3.2-11B-Vision-Instruct'`. - `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'https://hf-mirror.com/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe image in detail'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### Sample Output #### [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) ```log Inference time: xxxx s -------------------- Prompt -------------------- Describe image in detail -------------------- Output -------------------- This image features a charming anthropomorphic rabbit standing on a dirt path, surrounded by a picturesque rural landscape. The rabbit, with its light brown fur and distinctive large ``` The sample input image is: