# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # The code is adapted from: https://github.com/state-spaces/mamba. # import json import math import os import time from collections import namedtuple from dataclasses import dataclass, field from functools import partial from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat from torch import Tensor from transformers.generation import ( GreedySearchDecoderOnlyOutput, SampleDecoderOnlyOutput, TextStreamer, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils.hub import cached_file @dataclass class MambaConfig: d_model: int = 2560 n_layer: int = 64 vocab_size: int = 50277 ssm_cfg: dict = field(default_factory=dict) rms_norm: bool = True fused_add_norm: bool = False residual_in_fp32: bool = True pad_vocab_size_multiple: int = 8 # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights( module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True, n_residuals_per_layer=1, ): if isinstance(module, nn.Linear): if module.bias is not None: if not getattr(module.bias, "_no_reinit", False): nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) # We need to reinit p since this code could be called multiple times # Having just p *= scale would repeatedly scale it down nn.init.kaiming_uniform_(p, a=math.sqrt(5)) with torch.no_grad(): p /= math.sqrt(n_residuals_per_layer * n_layer) def selective_scan(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False): """ u: r(B D L) delta: r(B D L) A: c(D N) or r(D N) B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L) C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L) D: r(D) z: r(B D L) delta_bias: r(D), fp32 out: r(B D L) last_state (optional): r(B D dstate) or c(B D dstate) """ dtype_in = u.dtype u = u.float() delta = delta.float() if delta_bias is not None: delta = delta + delta_bias[..., None].float() if delta_softplus: delta = F.softplus(delta) batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1] is_variable_B = B.dim() >= 3 is_variable_C = C.dim() >= 3 if A.is_complex(): if is_variable_B: B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2)) if is_variable_C: C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2)) else: B = B.float() C = C.float() x = A.new_zeros((batch, dim, dstate)) ys = [] deltaA = torch.exp(torch.einsum("bdl,dn->bdln", delta, A)) if not is_variable_B: deltaB_u = torch.einsum("bdl,dn,bdl->bdln", delta, B, u) else: if B.dim() == 3: deltaB_u = torch.einsum("bdl,bnl,bdl->bdln", delta, B, u) else: B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1]) deltaB_u = torch.einsum("bdl,bdnl,bdl->bdln", delta, B, u) if is_variable_C and C.dim() == 4: C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1]) last_state = None for i in range(u.shape[2]): x = deltaA[:, :, i] * x + deltaB_u[:, :, i] if not is_variable_C: y = torch.einsum("bdn,dn->bd", x, C) else: if C.dim() == 3: y = torch.einsum("bdn,bn->bd", x, C[:, :, i]) else: y = torch.einsum("bdn,bdn->bd", x, C[:, :, :, i]) if i == u.shape[2] - 1: last_state = x if y.is_complex(): y = y.real * 2 ys.append(y) y = torch.stack(ys, dim=2) # (batch dim L) out = y if D is None else y + u * rearrange(D, "d -> d 1") if z is not None: out = out * F.silu(z) out = out.to(dtype=dtype_in) return out if not return_last_state else (out, last_state) def layer_norm(x, weight, bias, residual=None, eps=1e-6, prenorm=False): dtype = x.dtype if residual is not None: x = (x + residual).to(x.dtype) out = F.layer_norm( x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps ).to(dtype) return out if not prenorm else (out, x) def rms_norm(x, weight, bias, residual=None, eps=1e-6, prenorm=False): dtype = x.dtype if residual is not None: x = (x + residual).to(x.dtype) rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps) out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight) out = out.to(dtype) return out if not prenorm else (out, x) def load_config_hf(model_name): resolved_archive_file = cached_file( model_name, CONFIG_NAME, _raise_exceptions_for_missing_entries=False ) return json.load(open(resolved_archive_file)) def load_state_dict_hf(model_name, device=None, dtype=None): mapped_device = "cpu" if dtype not in [torch.float32, None] else device resolved_archive_file = cached_file( model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False ) return torch.load(resolved_archive_file, map_location=mapped_device) @dataclass class InferenceParams: """Inference parameters that are passed to the main model in order to efficienly calculate and store the context during inference.""" max_seqlen: int max_batch_size: int seqlen_offset: int = 0 batch_size_offset: int = 0 key_value_memory_dict: dict = field(default_factory=dict) lengths_per_sample: Optional[Tensor] = None def reset(self, max_seqlen, max_batch_size): self.max_seqlen = max_seqlen self.max_batch_size = max_batch_size self.seqlen_offset = 0 if self.lengths_per_sample is not None: self.lengths_per_sample.zero_() # https://github.com/NVIDIA/Megatron-LM/blob/0bb597b42c53355a567aba2a1357cc34b9d99ddd/megatron/text_generation/sampling.py # https://github.com/huggingface/transformers/blob/a44985b41cfa2de48a5e1de7f1f93b7483da25d1/src/transformers/generation/logits_process.py#L170 def modify_logits_for_top_p_filtering(logits, top_p): """Set the logits for none top-p values to -inf. Done in-place.""" if top_p <= 0.0 or top_p >= 1.0: return # First sort and calculate cumulative sum of probabilities. sorted_logits, sorted_indices = torch.sort(logits, descending=False) cumulative_probs = sorted_logits.softmax(dim=-1).cumsum(dim=-1) # Remove tokens with cumulative top_p above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs <= (1 - top_p) # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter( 1, sorted_indices, sorted_indices_to_remove ) logits.masked_fill_(indices_to_remove, float("-inf")) def modify_logit_for_repetition_penalty( logits, prev_output_tokens, repetition_penalty=1.0 ): """Apply repetition penalty. See https://arxiv.org/abs/1909.05858 logits: (batch_size, vocab_size) prev_output_tokens: (batch_size, seq_len) """ if repetition_penalty == 1.0: return logits score = torch.gather(logits, 1, prev_output_tokens) # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(1, prev_output_tokens, score) return logits def sample(logits, top_k=1, top_p=0.0, temperature=1.0): """Sample from top-k logits. Arguments: logits: Tensor of shape (batch_size, vocab_size) """ if top_k == 1: # Short-circuit for greedy decoding return logits.argmax(dim=-1) else: if top_p > 0.0: assert top_p <= 1.0, "top-p should be in (0, 1]." if top_k > 0: top_k = min(top_k, logits.size(-1)) # Safety check logits_top, indices = torch.topk(logits, top_k, dim=-1) if temperature != 1.0: logits_top /= temperature modify_logits_for_top_p_filtering(logits_top, top_p) return indices[ torch.arange(indices.shape[0], device=indices.device), torch.multinomial( torch.softmax(logits_top, dim=-1), num_samples=1 ).squeeze(dim=-1), ] else: # Clone so that when we modify for top_p we don't change the original logits logits_top = logits / temperature if temperature != 1.0 else logits.clone() modify_logits_for_top_p_filtering(logits_top, top_p) return torch.multinomial( torch.softmax(logits_top, dim=-1), num_samples=1 ).squeeze(dim=-1) @torch.inference_mode() def decode( input_ids, model, max_new_tokens, top_k=1, top_p=0.0, temperature=1.0, repetition_penalty=1.0, eos_token_id=None, teacher_outputs=None, vocab_size=None, streamer: Optional[TextStreamer] = None, ): """Decoding, either greedy or with top-k or top-p sampling. If top-k = 0, don't limit the number of candidates (pure sampling). Top-k and top-p can be used together. If top_k > 0 and top_p > 0, then top-k is applied first, then top-p. We assume that all sequences in the same batch have the same length. Arguments: input_ids: (batch, seq_len) max_new_tokens: int teacher_outputs (optional): (batch, seq_len). If provided, instead of sampling from the logits, the next token is taken from the teacher_outputs. Useful for testing. Returns: GreedySearchDecoderOnlyOutput or SampleDecoderOnlyOutput, with the following fields: sequences: (batch, max_length) scores: tuples of (batch, vocab_size) """ if streamer is not None: streamer.put(input_ids.cpu()) max_length = input_ids.shape[1] + max_new_tokens batch_size = input_ids.shape[0] teacher_output_len = teacher_outputs.shape[1] if teacher_outputs is not None else 0 inference_params = InferenceParams(max_seqlen=max_length, max_batch_size=batch_size) def get_logits(input_ids, inference_params): decoding = inference_params.seqlen_offset > 0 if decoding: position_ids = torch.full( (batch_size, 1), inference_params.seqlen_offset, dtype=torch.long, device=input_ids.device, ) else: position_ids = None logits = model( input_ids, position_ids=position_ids, inference_params=inference_params, num_last_tokens=1, ).logits.squeeze(dim=1) return logits[..., :vocab_size] if vocab_size is not None else logits def sample_tokens(logits, inference_params): if ( teacher_outputs is None or teacher_output_len <= inference_params.seqlen_offset ): token = sample(logits, top_k=top_k, top_p=top_p, temperature=temperature) else: token = teacher_outputs[:, inference_params.seqlen_offset] # return rearrange(token, "b -> b 1") return token.unsqueeze(1) def should_stop(current_token, inference_params): if inference_params.seqlen_offset == 0: return False if eos_token_id is not None and (current_token == eos_token_id).all(): return True if inference_params.seqlen_offset >= max_length - 1: return True return False scores, sequences = [], [input_ids] sequences_cat = input_ids while not should_stop(sequences[-1], inference_params): scores.append(get_logits(sequences[-1], inference_params)) inference_params.seqlen_offset += sequences[-1].shape[1] if repetition_penalty == 1.0: sampled_tokens = sample_tokens(scores[-1], inference_params) else: logits = modify_logit_for_repetition_penalty( scores[-1].clone(), sequences_cat, repetition_penalty ) sampled_tokens = sample_tokens(logits, inference_params) sequences_cat = torch.cat([sequences_cat, sampled_tokens], dim=1) sequences.append(sampled_tokens) if streamer is not None: streamer.put(sampled_tokens.cpu()) if streamer is not None: streamer.end() output_cls = ( GreedySearchDecoderOnlyOutput if top_k == 1 else SampleDecoderOnlyOutput ) return output_cls(sequences=torch.cat(sequences, dim=1), scores=tuple(scores)) class GenerationMixin: def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): raise NotImplementedError def generate( self, input_ids, max_new_tokens, top_k=1, top_p=0.0, temperature=1.0, return_dict_in_generate=False, output_scores=False, **kwargs, ): output = decode( input_ids, self, max_new_tokens, top_k=top_k, top_p=top_p, temperature=temperature, **kwargs, ) if not output_scores: output.scores = None return output if return_dict_in_generate else output.sequences class Block(nn.Module): def __init__(self, dim, mixer_cls, norm_cls=nn.LayerNorm, residual_in_fp32=False): """ Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection" This Block has a slightly different structure compared to a regular prenorm Transformer block. The standard block is: LN -> MHA/MLP -> Add. [Ref: https://arxiv.org/abs/2002.04745] Here we have: Add -> LN -> Mixer, returning both the hidden_states (output of the mixer) and the residual. This is purely for performance reasons, as we can fuse add and LayerNorm. The residual needs to be provided (except for the very first block). """ super().__init__() self.residual_in_fp32 = residual_in_fp32 self.mixer = mixer_cls(dim) self.norm = norm_cls(dim) def forward( self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None, ): r"""Pass the input through the encoder layer. Args: hidden_states: the sequence to the encoder layer (required). residual: hidden_states = Mixer(LN(residual)) """ residual = (hidden_states + residual) if residual is not None else hidden_states hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype)) if self.residual_in_fp32: residual = residual.to(torch.float32) hidden_states = self.mixer(hidden_states, inference_params=inference_params) return hidden_states, residual def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return self.mixer.allocate_inference_cache( batch_size, max_seqlen, dtype=dtype, **kwargs ) class RMSNorm(torch.nn.Module): def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) self.register_parameter("bias", None) self.reset_parameters() def reset_parameters(self): torch.nn.init.ones_(self.weight) def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False): return rms_norm( x, self.weight, self.bias, residual=residual, eps=self.eps, prenorm=prenorm, ) class Mamba(nn.Module): def __init__( self, d_model, d_state=16, d_conv=4, expand=2, dt_rank="auto", dt_min=0.001, dt_max=0.1, dt_init="random", dt_scale=1.0, dt_init_floor=1e-4, conv_bias=True, bias=False, use_fast_path=True, # Fused kernel options layer_idx=None, device=None, dtype=None, ): factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.d_model = d_model self.d_state = d_state self.d_conv = d_conv self.expand = expand self.d_inner = int(self.expand * self.d_model) self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank self.use_fast_path = use_fast_path self.layer_idx = layer_idx self.dt_proj_in_feature = self.dt_rank self.in_proj = nn.Linear( self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs ) self.conv1d = nn.Conv1d( in_channels=self.d_inner, out_channels=self.d_inner, bias=conv_bias, kernel_size=d_conv, groups=self.d_inner, padding=d_conv - 1, **factory_kwargs, ) self.activation = "silu" self.act = nn.SiLU() self.x_proj = nn.Linear( self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs ) self.dt_proj = nn.Linear( self.dt_rank, self.d_inner, bias=True, **factory_kwargs ) # Initialize special dt projection to preserve variance at initialization dt_init_std = self.dt_rank**-0.5 * dt_scale if dt_init == "constant": nn.init.constant_(self.dt_proj.weight, dt_init_std) elif dt_init == "random": nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std) else: raise NotImplementedError # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max dt = torch.exp( torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min) ).clamp(min=dt_init_floor) # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759 inv_dt = dt + torch.log(-torch.expm1(-dt)) with torch.no_grad(): self.dt_proj.bias.copy_(inv_dt) # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit self.dt_proj.bias._no_reinit = True # S4D real initialization A = repeat( torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device), "n -> d n", d=self.d_inner, ).contiguous() A_log = torch.log(A) # Keep A_log in fp32 self.A_log = nn.Parameter(A_log) self.A_log._no_weight_decay = True # D "skip" parameter self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32 self.D._no_weight_decay = True self.out_proj = nn.Linear( self.d_inner, self.d_model, bias=bias, **factory_kwargs ) def forward(self, hidden_states, inference_params=None): """ hidden_states: (B, L, D) Returns: same shape as hidden_states """ batch, seqlen, _ = hidden_states.shape conv_state, ssm_state = None, None if inference_params is not None: conv_state, ssm_state = self._get_states_from_cache(inference_params, batch) if inference_params.seqlen_offset > 0: # The states are updated inplace out, _, _ = self.step(hidden_states, conv_state, ssm_state) return out # We do matmul and transpose BLH -> HBL at the same time xz = rearrange( self.in_proj(rearrange(hidden_states, "b l d -> d (b l)").t()).t(), "d (b l) -> b d l", l=seqlen, ) A = -torch.exp(self.A_log.float()) # (d_inner, d_state) # In the backward pass we write dx and dz next to each other to avoid torch.cat x, z = xz.chunk(2, dim=1) # Compute short convolution if conv_state is not None: # If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv # Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise. conv_state.copy_( F.pad(x, (self.d_conv - x.shape[-1], 0)) ) # Update state (B D W) # if causal_conv1d_fn is None: x = self.act(self.conv1d(x)[..., :seqlen]) # We're careful here about the layout, to avoid extra transposes. # We want dt to have d as the slowest moving dimension # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d) dt, B, C = torch.split( x_dbl, [self.dt_proj_in_feature, self.d_state, self.d_state], dim=-1 ) dt = self.dt_proj(dt).t() dt = rearrange(dt, "d (b l) -> b d l", l=seqlen) B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous() C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous() assert self.activation in ["silu", "swish"] y = selective_scan( x, dt, A, B, C, self.D.float(), z=z, delta_bias=None, delta_softplus=True, return_last_state=ssm_state is not None, ) if ssm_state is not None: y, last_state = y ssm_state.copy_(last_state) y = rearrange(y, "b d l -> b l d") out = self.out_proj(y) return out def step(self, hidden_states, conv_state, ssm_state): dtype = hidden_states.dtype assert ( hidden_states.shape[1] == 1 ), "Only support decoding with 1 token at a time for now" xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D) x, z = xz.chunk(2, dim=-1) # (B D) # Conv step conv_state.copy_( torch.roll(conv_state, shifts=-1, dims=-1) ) # Update state (B D W) conv_state[:, :, -1] = x x = torch.sum( conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1 ) # (B D) if self.conv1d.bias is not None: x = x + self.conv1d.bias x = self.act(x).to(dtype=dtype) x_db = self.x_proj(x) # (B dt_rank+2*d_state) dt, B, C = torch.split( x_db, [self.dt_proj_in_feature, self.d_state, self.d_state], dim=-1 ) dt = self.dt_proj(dt) A = -torch.exp(self.A_log.float()) # (d_inner, d_state) # SSM step # Discretize A and B dt = F.softplus(dt) dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A)) dB = torch.einsum("bd,bn->bdn", dt, B) ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB) y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C) y = y + self.D.to(dtype) * x y = y * self.act(z) # (B D) out = self.out_proj(y) return out.unsqueeze(1), conv_state, ssm_state def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): device = self.out_proj.weight.device conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype conv_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype, ) ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype # ssm_dtype = torch.float32 ssm_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype, ) return conv_state, ssm_state def _get_states_from_cache( self, inference_params, batch_size, initialize_states=False ): assert self.layer_idx is not None if self.layer_idx not in inference_params.key_value_memory_dict: batch_shape = (batch_size,) conv_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_conv, device=self.conv1d.weight.device, dtype=self.conv1d.weight.dtype, ) ssm_state = torch.zeros( batch_size, self.d_model * self.expand, self.d_state, device=self.dt_proj.weight.device, dtype=self.dt_proj.weight.dtype, # dtype=torch.float32, ) inference_params.key_value_memory_dict[self.layer_idx] = ( conv_state, ssm_state, ) else: conv_state, ssm_state = inference_params.key_value_memory_dict[ self.layer_idx ] # TODO: What if batch size changes between generation, and we reuse the same states? if initialize_states: conv_state.zero_() ssm_state.zero_() return conv_state, ssm_state def create_block( d_model, ssm_cfg=None, norm_epsilon=1e-5, rms_norm=False, residual_in_fp32=False, layer_idx=None, device=None, dtype=None, ): if ssm_cfg is None: ssm_cfg = {} factory_kwargs = {"device": device, "dtype": dtype} mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs) norm_cls = partial( nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs ) block = Block( d_model, mixer_cls, norm_cls=norm_cls, residual_in_fp32=residual_in_fp32, ) block.layer_idx = layer_idx return block class MixerModel(nn.Module): def __init__( self, d_model: int, n_layer: int, vocab_size: int, ssm_cfg=None, norm_epsilon: float = 1e-5, rms_norm: bool = False, initializer_cfg=None, residual_in_fp32=False, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.residual_in_fp32 = residual_in_fp32 self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs) self.layers = nn.ModuleList( [ create_block( d_model, ssm_cfg=ssm_cfg, norm_epsilon=norm_epsilon, rms_norm=rms_norm, residual_in_fp32=residual_in_fp32, layer_idx=i, **factory_kwargs, ) for i in range(n_layer) ] ) self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)( d_model, eps=norm_epsilon, **factory_kwargs ) self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return { i: layer.allocate_inference_cache( batch_size, max_seqlen, dtype=dtype, **kwargs ) for i, layer in enumerate(self.layers) } def forward(self, input_ids, inference_params=None): hidden_states = self.embedding(input_ids) residual = None for layer in self.layers: hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params ) residual = (hidden_states + residual) if residual is not None else hidden_states hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) return hidden_states class MambaLMHeadModel(nn.Module, GenerationMixin): def __init__( self, config: MambaConfig, initializer_cfg=None, device='cpu', dtype=torch.float32, ) -> None: self.config = config d_model = config.d_model n_layer = config.n_layer vocab_size = config.vocab_size ssm_cfg = config.ssm_cfg rms_norm = config.rms_norm residual_in_fp32 = config.residual_in_fp32 pad_vocab_size_multiple = config.pad_vocab_size_multiple factory_kwargs = {"device": device, "dtype": dtype} super().__init__() if vocab_size % pad_vocab_size_multiple != 0: vocab_size += pad_vocab_size_multiple - ( vocab_size % pad_vocab_size_multiple ) self.backbone = MixerModel( d_model=d_model, n_layer=n_layer, vocab_size=vocab_size, ssm_cfg=ssm_cfg, rms_norm=rms_norm, initializer_cfg=initializer_cfg, residual_in_fp32=residual_in_fp32, **factory_kwargs, ) self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) # Initialize weights and apply final processing self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embedding.weight def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return self.backbone.allocate_inference_cache( batch_size, max_seqlen, dtype=dtype, **kwargs ) def forward( self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0 ): """ "position_ids" is just to be compatible with Transformer generation. We don't use it. num_last_tokens: if > 0, only return the logits for the last n tokens """ hidden_states = self.backbone(input_ids, inference_params=inference_params) if num_last_tokens > 0: hidden_states = hidden_states[:, -num_last_tokens:] lm_logits = self.lm_head(hidden_states) CausalLMOutput = namedtuple("CausalLMOutput", ["logits"]) return CausalLMOutput(logits=lm_logits) @classmethod def from_pretrained(cls, pretrained_model_name, device='cpu', dtype=torch.float32, **kwargs): config_data = load_config_hf(pretrained_model_name) config = MambaConfig(**config_data) model = cls(config, device=device, dtype=dtype, **kwargs) model.load_state_dict( load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype) ) return model def save_pretrained(self, save_directory): """ Minimal implementation of save_pretrained for MambaLMHeadModel. Save the model and its configuration file to a directory. """ # Ensure save_directory exists if not os.path.exists(save_directory): os.makedirs(save_directory) # Save the model's state_dict model_path = os.path.join(save_directory, "pytorch_model.bin") torch.save(self.state_dict(), model_path) # Save the configuration of the model config_path = os.path.join(save_directory, "config.json") with open(config_path, "w") as f: json.dump(self.config.__dict__, f) @property def device(self): return next(self.parameters()).device