# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import argparse import torch from ipex_llm.transformers import AutoModelForCausalLM from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Moonlight model') parser.add_argument('--converted-model-path', type=str, required=True, help='Model path to the converted Moonlight model by convert.py') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() converted_model_path = args.converted_model_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format model = AutoModelForCausalLM.from_pretrained(converted_model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True, use_cache=True) model = model.to('xpu') # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(converted_model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): # here the prompt tuning refers to # https://huggingface.co/moonshotai/Moonlight-16B-A3B-Instruct#inference-with-hugging-face-transformers messages = [ {"role": "system", "content": "You are a helpful assistant provided by Moonshot-AI."}, {"role": "user", "content": args.prompt} ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to('xpu') # ipex_llm model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict) # start inference st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=False) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(args.prompt) print('-'*20, 'Output', '-'*20) print(output_str)