# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is adapted from https://github.com/tloen/alpaca-lora/blob/main/export_hf_checkpoint.py # # Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from transformers import LlamaTokenizer # noqa: F402 from bigdl.llm.transformers.qlora import PeftModel, LoraConfig from bigdl.llm.transformers import AutoModelForCausalLM from bigdl.llm.transformers.low_bit_linear import get_block_size import argparse import tempfile import shutil if __name__ == "__main__": parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--adapter_path', type=str,) parser.add_argument('--output_path', type=str,) args = parser.parse_args() base_model = model_path = args.repo_id_or_model_path adapter_path = args.adapter_path tokenizer = LlamaTokenizer.from_pretrained(base_model) lora_config = LoraConfig.from_json_file(os.path.join(adapter_path, "adapter_config.json")) training_mode = lora_config.get("training_mode", "qlora") qa_lora = training_mode == "qalora" temp_dir = None if qa_lora: # Convert the qa-lora adapter to the correct shapes # The default 4-bit format for qa_lora is sym_int4 block_size = get_block_size("sym_int4") temp_dir = tempfile.TemporaryDirectory() tmpdirname = os.path.join(temp_dir.name, "adapter") try: shutil.copytree(adapter_path, tmpdirname) except Exception as e: print(f"Failed to copy adapter dir, error: {e}") mid_lora_path = os.path.join(tmpdirname, "adapter_model.bin") adapter_path = os.path.join(adapter_path, "adapter_model.bin") lora = torch.load(adapter_path, map_location='cpu') # Get lora_a names tmp_keys = [key for key in lora.keys() if 'lora_A' in key] for tmp_key in tmp_keys: lora_a = lora[tmp_key] / block_size lora[tmp_key] = torch.repeat_interleave(lora_a, block_size, dim=1) torch.save(lora, mid_lora_path) adapter_path = tmpdirname try: base_model = AutoModelForCausalLM.from_pretrained( base_model, # load_in_low_bit="nf4", # should load the orignal model torch_dtype=torch.float16, device_map={"": "cpu"}, ) lora_model = PeftModel.from_pretrained( base_model, adapter_path, device_map={"": "cpu"}, torch_dtype=torch.float16, ) # merge weights - new merging method from peft lora_model = lora_model.merge_and_unload() lora_model.train(False) lora_model_sd = lora_model.state_dict() deloreanized_sd = { k.replace("base_model.model.", ""): v for k, v in lora_model_sd.items() if "lora" not in k } base_model.save_pretrained(args.output_path, state_dict=deloreanized_sd) tokenizer.save_pretrained(args.output_path) except Exception as e: print(f"Failed to merge the adapter, error: {e}.") finally: if qa_lora and temp_dir: temp_dir.cleanup()