# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm.transformers import AutoModelForCausalLM from transformers import LlamaTokenizer # you could tune the prompt based on your own model, # here the prompt tuning refers to https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#example-prompt-weights-v0 Vicuna_PROMPT_FORMAT = "### Human:\n{prompt} \n ### Assistant:\n" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Vicuna model') parser.add_argument('--repo-id-or-model-path', type=str, default="lmsys/vicuna-13b-v1.3", help='The huggingface repo id for the Vicuna (e.g. `lmsys/vicuna-13b-v1.3` and `eachadea/vicuna-7b-1.1`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True) model = model.to('xpu') # Load tokenizer tokenizer = LlamaTokenizer.from_pretrained(model_path) # Generate predicted tokens with torch.inference_mode(): prompt = Vicuna_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') st = time.time() # enabling `use_cache=True` allows the model to utilize the previous # key/values attentions to speed up decoding; # to obtain optimal performance with BigDL-LLM INT4 optimizations, # it is important to set use_cache=True for vicuna-v1.3 models output = model.generate(input_ids, use_cache=True, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)